Quantum control for high-fidelity multi-qubit gates

Quantum control for error correction is critical for the practical use of quantum computers. We address quantum optimal control for single-shot multi-qubit gates by framing as a feasibility problem for the Hamiltonian model and then solving with standard global-optimization software. Our approach yields faster high-fidelity ($>$99.99\%) single-shot three-qubit-gate control than obtained previously, and our method has enabled us to solve the quantum-control problem for a fast high-fidelity four-qubit gate.

[1]  R. Fletcher Practical Methods of Optimization , 1988 .

[2]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[3]  Giuseppe Dattoli,et al.  Time‐ordering techniques and solution of differential difference equation appearing in quantum optics , 1986 .

[4]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[5]  Barry C Sanders,et al.  High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.

[6]  A. Wallraff,et al.  Quantum-control approach to realizing a Toffoli gate in circuit QED , 2011, 1108.3442.

[7]  Fred W. Glover,et al.  Scatter Search and Local Nlp Solvers: A Multistart Framework for Global Optimization , 2006, INFORMS J. Comput..

[8]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[9]  Austin G. Fowler,et al.  Surface code with decoherence: An analysis of three superconducting architectures , 2012, 1210.5799.

[10]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[11]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[12]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[13]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[14]  Barry C. Sanders,et al.  Evolutionary Algorithms for Hard Quantum Control , 2014, 1403.0943.

[15]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[16]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[17]  Jens Koch,et al.  Life after charge noise: recent results with transmon qubits , 2008, Quantum Inf. Process..

[18]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[19]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[20]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[21]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[22]  Barry C. Sanders,et al.  Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach , 2015, ArXiv.

[23]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[24]  Sophie G. Schirmer,et al.  Time optimal information transfer in spintronics networks , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[25]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[26]  S. G. Schirmer,et al.  Implementation of fault-tolerant quantum logic gates via optimal control , 2009, 0907.1635.

[27]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[28]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[29]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[30]  J. Martinis,et al.  High-fidelity controlled-σ Z gate for resonator-based superconducting quantum computers , 2013, 1301.1719.

[31]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[32]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[33]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[34]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[35]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .