Molecular ecology and adaptation of visual photopigments in craniates

In craniates, opsin‐based photopigments expressed in the eye encode molecular ‘light sensors’ that constitute the initial protein in photoreception and the activation of the phototransduction cascade. Since the cloning and sequencing of the first vertebrate opsin gene (bovine rod opsin) nearly 30 years ago (Ovchinnikov Yu 1982, FEBS Letters, 148, 179–191; Hargrave et al. 1983, Biophysics of Structure & Mechanism, 9, 235–244; Nathans & Hogness 1983, Cell, 34, 807–814), it is now well established that variation in the subtypes and spectral properties of the visual pigments that mediate colour and dim‐light vision is a prevalent mechanism for the molecular adaptation to diverse light environments. In this review, we discuss the origins and spectral tuning of photopigments that first arose in the agnathans to sample light within the ancient aquatic landscape of the Early Cambrian, detailing the molecular changes that subsequently occurred in each of the opsin classes independently within the main branches of extant jawed gnathostomes. Specifically, we discuss the adaptive changes that have occurred in the photoreceptors of craniates as they met the ecological challenges to survive in quite differing photic niches, including brightly lit aquatic surroundings; the deep sea; the transition to and from land; diurnal, crepuscular and nocturnal environments; and light‐restricted fossorial settings. The review ends with a discussion of the limitations inherent to the ‘nocturnal‐bottleneck’ hypothesis relevant to the evolution of the mammalian visual system and a proposition that transition through a ‘mesopic‐bottleneck’ may be a more appropriate model.

[1]  J. P. Coimbra,et al.  Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes , 2012, The Journal of comparative neurology.

[2]  R. Foster,et al.  Focus on molecules: melanopsin. , 2012, Experimental eye research.

[3]  D. Hunt,et al.  Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments , 2012, Cellular and Molecular Life Sciences.

[4]  D. Hunt,et al.  Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments , 2012, Cellular and Molecular Life Sciences.

[5]  Livia S. Carvalho,et al.  Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments , 2012, Proceedings of the Royal Society B: Biological Sciences.

[6]  R. Lucas,et al.  A Distinct Contribution of Short-Wavelength-Sensitive Cones to Light-Evoked Activity in the Mouse Pretectal Olivary Nucleus , 2011, The Journal of Neuroscience.

[7]  S. Halford,et al.  Vertebrate ancient opsin photopigment spectra and the avian photoperiodic response , 2011, Biology Letters.

[8]  S. Halford,et al.  Functional diversity of melanopsins and their global expression in the teleost retina , 2011, Cellular and Molecular Life Sciences.

[9]  T. Lamb Evolution of the eye. Scientists now have a clear vision of how our notoriously complex eye came to be. , 2011, Scientific American.

[10]  T. Lamb Evolution of the Eye , 2011 .

[11]  I. Provencio The hidden organ in your eyes. , 2011, Scientific American.

[12]  J. M. Morrow,et al.  A novel rhodopsin-like gene expressed in zebrafish retina , 2011, Visual Neuroscience.

[13]  J. Taylor,et al.  RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes , 2011, BMC Evolutionary Biology.

[14]  S. O’Brien,et al.  A Molecular Phylogeny of Living Primates , 2011, PLoS genetics.

[15]  Detlef Weigel,et al.  Gene Duplication and Divergence of Long Wavelength-Sensitive Opsin Genes in the Guppy, Poecilia reticulata , 2011, Journal of Molecular Evolution.

[16]  W. L. Davies Adaptive Gene Loss in Vertebrates: Photosensitivity as a Model Case , 2011 .

[17]  S. Collin,et al.  Microspectrophotometric evidence for cone monochromacy in sharks , 2011, Naturwissenschaften.

[18]  W. Ebeling,et al.  Diversity of Color Vision: Not All Australian Marsupials Are Trichromatic , 2010, PloS one.

[19]  S. Kawamura,et al.  A Single Enhancer Regulating the Differential Expression of Duplicated Red-Sensitive Opsin Genes in Zebrafish , 2010, PLoS genetics.

[20]  Satchidananda Panda,et al.  Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System , 2010, PLoS biology.

[21]  R. Foster,et al.  Vertebrate ancient opsin and melanopsin: divergent irradiance detectors , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[22]  J. Bowmaker,et al.  Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes , 2010, Journal of Experimental Biology.

[23]  Satchidananda Panda,et al.  The emerging roles of melanopsin in behavioral adaptation to light. , 2010, Trends in molecular medicine.

[24]  Margaret I. Hall,et al.  The Nocturnal Bottleneck and the Evolution of Mammalian Vision , 2010, Brain, Behavior and Evolution.

[25]  Hiroshi Momiji,et al.  Distinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance , 2010, Neuron.

[26]  L. Peichl,et al.  Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839) , 2010, The Journal of comparative neurology.

[27]  K. Carleton,et al.  Plasticity of opsin gene expression in cichlids from Lake Malawi , 2010, Molecular ecology.

[28]  F. Breden,et al.  Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri , 2010, BMC Evolutionary Biology.

[29]  Gordon L. Fain,et al.  Phototransduction and the Evolution of Photoreceptors , 2010, Current Biology.

[30]  H. Innan,et al.  An explicit signature of balancing selection for color-vision variation in new world monkeys. , 2010, Molecular biology and evolution.

[31]  J. Bowmaker,et al.  Developmental dynamics of cone photoreceptors in the eel , 2009, BMC Developmental Biology.

[32]  T. Cronin,et al.  The Eyes Have It: Regulatory and Structural Changes Both Underlie Cichlid Visual Pigment Diversity , 2009, PLoS biology.

[33]  T. Lamb Evolution of vertebrate retinal photoreception , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  S. Halford,et al.  The evolution of irradiance detection: melanopsin and the non-visual opsins , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  Livia S. Carvalho,et al.  Evolution and spectral tuning of visual pigments in birds and mammals , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  D. Hunt,et al.  The evolution of early vertebrate photoreceptors , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[37]  Yoshinori Shichida,et al.  Evolution of opsins and phototransduction , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  A. Meyer,et al.  The evolutionary significance of ancient genome duplications , 2009, Nature Reviews Genetics.

[39]  Gregory L. Owens,et al.  The opsin repertoire of Jenynsia onca: a new perspective on gene duplication and divergence in livebearers , 2009, BMC Research Notes.

[40]  D. Hunt,et al.  Adaptive gene loss reflects differences in the visual ecology of basal vertebrates. , 2009, Molecular biology and evolution.

[41]  R. Foster,et al.  Seasons of Life: The Biological Rhythms That Enable Living Things to Thrive and Survive , 2009 .

[42]  J. Taylor,et al.  A Fish Eye Out of Water: Ten Visual Opsins in the Four-Eyed Fish, Anableps anableps , 2009, PloS one.

[43]  K. Yau,et al.  Intrinsic Light Response of Retinal Horizontal Cells of Teleosts , 2009, Nature.

[44]  Livia S. Carvalho,et al.  Shedding Light on Serpent Sight: The Visual Pigments of Henophidian Snakes , 2009, The Journal of Neuroscience.

[45]  M. Vorobyev,et al.  Interplay of olfaction and vision in fruit foraging of spider monkeys , 2009, Animal Behaviour.

[46]  Livia S. Carvalho,et al.  Cone visual pigments in two species of South American marsupials. , 2009, Gene.

[47]  Derk-Jan Dijk,et al.  Daily and Seasonal Variation in the Spectral Composition of Light Exposure in Humans , 2009, Chronobiology international.

[48]  Deborah A. Bolnick,et al.  Opsin gene polymorphism predicts trichromacy in a cathemeral lemur , 2009, American journal of primatology.

[49]  David M Hunt,et al.  Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. , 2008, Genome research.

[50]  M. Vorobyev,et al.  Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates , 2008, PloS one.

[51]  M. Schneider,et al.  Speciation through sensory drive in cichlid fish , 2008, Nature.

[52]  J. Bowmaker Evolution of vertebrate visual pigments , 2008, Vision Research.

[53]  M. Mainster,et al.  Circadian photoreception: ageing and the eye’s important role in systemic health , 2008, British Journal of Ophthalmology.

[54]  D. Hunt,et al.  Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus) , 2008, Proceedings of the Royal Society B: Biological Sciences.

[55]  T. Cronin,et al.  Photochemistry of retinal chromophore in mouse melanopsin , 2008, Proceedings of the National Academy of Sciences.

[56]  H. Ohuchi,et al.  Expression patterns of the opsin 5–related genes in the developing chicken retina , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[57]  S. Collin,et al.  Early evolution of multifocal optics for well-focused colour vision in vertebrates , 2008, Journal of Experimental Biology.

[58]  Livia S. Carvalho,et al.  The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri , 2008, Journal of Experimental Biology.

[59]  J. Graves,et al.  Cone visual pigments of monotremes: Filling the phylogenetic gap , 2008, Visual Neuroscience.

[60]  J. Bowmaker,et al.  Eel visual pigments revisited: The fate of retinal cones during metamorphosis , 2008, Visual Neuroscience.

[61]  S. Peirson,et al.  Melanopsin: an exciting photopigment , 2008, Trends in Neurosciences.

[62]  T. Lamb,et al.  Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup , 2007, Nature Reviews Neuroscience.

[63]  Y. Fukada,et al.  Two isoforms of chicken melanopsins show blue light sensitivity , 2007, FEBS letters.

[64]  A. E. Trezíse,et al.  Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri , 2007, BMC Evolutionary Biology.

[65]  G. Perry,et al.  Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. , 2007, Molecular biology and evolution.

[66]  Livia S. Carvalho,et al.  The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis , 2007, Journal of Experimental Biology.

[67]  Livia S. Carvalho,et al.  The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. , 2007, Molecular biology and evolution.

[68]  H. Ohuchi,et al.  Expression pattern of the melanopsin-like (cOpn4m) and VA opsin-like genes in the developing chicken retina and neural tissues. , 2007, Gene expression patterns : GEP.

[69]  Gerald H Jacobs,et al.  Mutational changes in S‐cone opsin genes common to both nocturnal and cathemeral Aotus monkeys , 2007, American journal of primatology.

[70]  A. Sabatés,et al.  Early development of eye and retina in lanternfish larvae , 2007, Visual Neuroscience.

[71]  G. H. Jacobs,et al.  Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment , 2007, Science.

[72]  Livia S. Carvalho,et al.  Spectral Tuning of Shortwave‐sensitive Visual Pigments in Vertebrates † , 2007, Photochemistry and photobiology.

[73]  B. Chang,et al.  Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual , 2007, BMC Evolutionary Biology.

[74]  Amanda D. Melin,et al.  Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus , 2007, Animal Behaviour.

[75]  Detlef Weigel,et al.  Opsin gene duplication and diversification in the guppy, a model for sexual selection , 2007, Proceedings of the Royal Society B: Biological Sciences.

[76]  D. Hunt,et al.  Avian Visual Pigments: Characteristics, Spectral Tuning, and Evolution , 2007, The American Naturalist.

[77]  D. Hunt,et al.  Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials. , 2006, Gene.

[78]  P. Robinson,et al.  The visual pigments of the West Indian manatee (Trichechus manatus) , 2006, Vision Research.

[79]  David M Hunt,et al.  Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. , 2006, Molecular biology and evolution.

[80]  T. Kemp The origin and early radiation of the therapsid mammal‐like reptiles: a palaeobiological hypothesis , 2006, Journal of evolutionary biology.

[81]  I. Priede,et al.  The absence of sharks from abyssal regions of the world's oceans , 2006, Proceedings of the Royal Society B: Biological Sciences.

[82]  A. Stockman,et al.  Into the twilight zone: the complexities of mesopic vision and luminous efficiency , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[83]  Hiroshi Mitani,et al.  Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). , 2006, Gene.

[84]  G. H. Jacobs,et al.  Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter , 2006, Journal of Comparative Physiology A.

[85]  Livia S. Carvalho,et al.  Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle , 2006, Current Biology.

[86]  S. Collin,et al.  Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870) , 2006, The Journal of comparative neurology.

[87]  C. Hiramatsu,et al.  Color‐vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica , 2005, American journal of primatology.

[88]  A. Mikami,et al.  Advantage of dichromats over trichromats in discrimination of color‐camouflaged stimuli in nonhuman primates , 2005, American journal of primatology.

[89]  G. Maes,et al.  The European eel (Anguilla anguilla, Linnaeus), its Lifecycle, Evolution and Reproduction: A Literature Review , 2005, Reviews in Fish Biology and Fisheries.

[90]  P. Robinson,et al.  Cone visual pigments of aquatic mammals , 2005, Visual Neuroscience.

[91]  H. Ohuchi,et al.  A non‐canonical photopigment, melanopsin, is expressed in the differentiating ganglion, horizontal, and bipolar cells of the chicken retina , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[92]  L. Peichl Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[93]  J. Bowmaker,et al.  Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia , 2005, Molecular ecology.

[94]  Wen-Hsiung Li,et al.  Evidence from opsin genes rejects nocturnality in ancestral primates. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[95]  S. Collin,et al.  Opsins: Evolution in Waiting , 2005, Current Biology.

[96]  David M. Hunt,et al.  Mix and Match Color Vision: Tuning Spectral Sensitivity by Differential Opsin Gene Expression in Lake Malawi Cichlids , 2005, Current Biology.

[97]  G. H. Jacobs,et al.  Polymorphic New World monkeys with more than three M/L cone types. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[98]  A. Meyer,et al.  From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[99]  T. Morizumi,et al.  Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[100]  Francisco Bozinovic,et al.  Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, octodontidae) , 2005, The Journal of comparative neurology.

[101]  T. Spady,et al.  Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. , 2005, Molecular biology and evolution.

[102]  Leo Peichl,et al.  Cone Photoreceptor Diversity in the Retinas of Fruit Bats (Megachiroptera) , 2005, Brain, Behavior and Evolution.

[103]  Naomi Takenaka,et al.  Elephants and Human Color-Blind Deuteranopes Have Identical Sets of Visual Pigments Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY686752, AY686753, AY686754. , 2005, Genetics.

[104]  D. Hunt,et al.  Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus) , 2005, Proceedings of the Royal Society B: Biological Sciences.

[105]  Shoji Kawamura,et al.  Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development , 2005, Journal of Experimental Biology.

[106]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[107]  I. Shimizu,et al.  Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei). , 2005, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[108]  G. H. Jacobs,et al.  Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae) , 2005, Journal of Comparative Physiology A.

[109]  Thomas J. Lisney,et al.  Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch , 2004, Journal of Experimental Biology.

[110]  G. Grigg,et al.  The Evolution of Endothermy and Its Diversity in Mammals and Birds , 2004, Physiological and Biochemical Zoology.

[111]  Charles E. Chapple,et al.  Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.

[112]  C. Hiramatsu,et al.  Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of residues at sites 229 and 233 , 2004, Vision Research.

[113]  L. Peichl,et al.  Subcortical visual system of the African mole‐rat Cryptomys anselli: to see or not to see? , 2004, The European journal of neuroscience.

[114]  J. Bowmaker,et al.  Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[115]  J. Klein,et al.  The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. , 2004, Molecular biology and evolution.

[116]  A. E. Trezíse,et al.  The origins of colour vision in vertebrates , 2004, Clinical & experimental optometry.

[117]  J. Bowmaker,et al.  A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. , 2004, Biochemistry.

[118]  L. Rojas,et al.  Retinal Morphology and Electrophysiology of Two Caprimulgiformes Birds: The Cave-Living and Nocturnal Oilbird (Steatornis caripensis), and the Crepuscularly and Nocturnally Foraging Common Pauraque (Nyctidromus albicollis) , 2004, Brain, Behavior and Evolution.

[119]  J. Freyssinier-Nova,et al.  A proposed unified system of photometry , 2004 .

[120]  R. Foster,et al.  Inner retinal photoreceptors (IRPs) in mammals and teleost fish , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[121]  J. Graves,et al.  Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed dunnarts: Sequence and inferred spectral properties , 2004, Visual Neuroscience.

[122]  S. Brenner,et al.  Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[123]  T. Kocher Adaptive evolution and explosive speciation: the cichlid fish model , 2004, Nature Reviews Genetics.

[124]  Christiana L. Cheng,et al.  Buckminsterfullerenes: A non-metal system for nitrogen fixation , 2004, Nature.

[125]  Pavel Nemec,et al.  Unusual cone and rod properties in subterranean African mole‐rats (Rodentia, Bathyergidae) , 2004, The European journal of neuroscience.

[126]  S. Kawamura,et al.  Ancestral Loss of Short Wave-Sensitive Cone Visual Pigment in Lorisiform Prosimians, Contrasting with Its Strict Conservation in Other Prosimians , 2004, Journal of Molecular Evolution.

[127]  Jeffrey P. Mower,et al.  Molecular evolution of bat color vision genes. , 2003, Molecular biology and evolution.

[128]  S. Kawamura,et al.  Absorption spectra of reconstituted visual pigments of a nocturnal prosimian, Otolemur crassicaudatus. , 2003, Gene.

[129]  I. Potter,et al.  Phylogeny of Living Parasitic Lampreys (Petromyzontiformes) Based on Morphological Data , 2003, Copeia.

[130]  M. A. Knight,et al.  Ancient colour vision: multiple opsin genes in the ancestral vertebrates , 2003, Current Biology.

[131]  Thomas W Cronin,et al.  Melanopsin forms a functional short-wavelength photopigment. , 2003, Biochemistry.

[132]  Gerald H. Jacobs,et al.  Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Marta Muñoz,et al.  VA Opsin, Melanopsin, and an Inherent Light Response within Retinal Interneurons , 2003, Current Biology.

[134]  M. Springer,et al.  The evolution of tribospheny and the antiquity of mammalian clades. , 2003, Molecular phylogenetics and evolution.

[135]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[136]  D. Berson,et al.  Melanopsin, Ganglion-Cell Photoreceptors, and Mammalian Photoentrainment , 2003, Journal of biological rhythms.

[137]  O. Håstad,et al.  Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. , 2003, Molecular biology and evolution.

[138]  Jian-xing Ma,et al.  A novel Xenopus SWS2, P434 visual pigment: structure, cellular location, and spectral analyses. , 2003, Molecular vision.

[139]  Yusuke Takahashi,et al.  Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. , 2003, Biochemistry.

[140]  S. Deeb,et al.  The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. , 2003, Molecular biology and evolution.

[141]  L. Peichl,et al.  Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus octodon (rodentia): implications for visual ecology. , 2003, Investigative ophthalmology & visual science.

[142]  D. H. Levenson,et al.  Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[143]  I. Potter,et al.  Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis) , 2003, Visual Neuroscience.

[144]  A. Meyer,et al.  Genome duplication, a trait shared by 22000 species of ray-finned fish. , 2003, Genome research.

[145]  Shoji Kawamura,et al.  Gene duplication and spectral diversification of cone visual pigments of zebrafish. , 2003, Genetics.

[146]  G. H. Jacobs,et al.  Cone pigment variations in four genera of new world monkeys , 2003, Vision Research.

[147]  J. Bowmaker,et al.  Multiple photopigments from the Mexican blind cavefish, Astyanax fasciatus: a microspectrophotometric study , 2003, Vision Research.

[148]  S. Morris,et al.  Head and backbone of the Early Cambrian vertebrate Haikouichthys , 2003, Nature.

[149]  I. Kornfield,et al.  Phylogeography of Lake Malawi cichlids of the genus Pseudotropheus: significance of allopatric colour variation , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[150]  F. Tokunaga,et al.  Molecular evolution of proteins involved in vertebrate phototransduction. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[151]  J. Partridge,et al.  Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. , 2002, The Journal of experimental biology.

[152]  A. Terakita,et al.  Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. , 2002, Biochemistry.

[153]  J. Bowmaker,et al.  The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. , 2002, The Biochemical journal.

[154]  E. Nevo,et al.  Adaptive loss of ultraviolet‐sensitive/violet‐sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi) , 2002, The European journal of neuroscience.

[155]  D. Siveter,et al.  New evidence on the anatomy and phylogeny of the earliest vertebrates , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[156]  J. Bowmaker,et al.  Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. , 2002, Biochemistry.

[157]  D. Oprian,et al.  Spectral tuning in the mammalian short-wavelength sensitive cone pigments. , 2002, Biochemistry.

[158]  L. Beazley,et al.  Trichromacy in Australian Marsupials , 2002, Current Biology.

[159]  R. Foster,et al.  Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. , 2002, Journal of Experimental Biology.

[160]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[161]  M. Hankins,et al.  The Primary Visual Pathway in Humans Is Regulated According to Long-Term Light Exposure through the Action of a Nonclassical Photopigment , 2002, Current Biology.

[162]  P. Janvier,et al.  Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. , 2002, Molecular phylogenetics and evolution.

[163]  D. Oprian,et al.  A Visual Pigment Expressed in Both Rod and Cone Photoreceptors , 2001, Neuron.

[164]  N. Blow,et al.  Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko. , 2001, Gene.

[165]  D M Hunt,et al.  The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. , 2001, The Journal of experimental biology.

[166]  E. Loew,et al.  Retinal photoreceptors and visual pigments in Boa constrictor imperator. , 2001, The Journal of experimental zoology.

[167]  V. Govardovskii,et al.  Photoreceptors and visual pigments in the red-eared turtle, Trachemys scripta elegans. , 2001, Visual neuroscience.

[168]  S. Yokoyama,et al.  The molecular genetics and evolution of red and green color vision in vertebrates. , 2001, Genetics.

[169]  T. Kocher,et al.  Cone opsin genes of african cichlid fishes: tuning spectral sensitivity by differential gene expression. , 2001, Molecular biology and evolution.

[170]  Y. Tsukahara,et al.  Distribution of blue‐sensitive photoreceptors in amphibian retinas , 2001, FEBS letters.

[171]  Robert J. Lucas,et al.  Characterization of an ocular photopigment capable of driving pupillary constriction in mice , 2001, Nature Neuroscience.

[172]  M. Hirai,et al.  Genomic and spectral analyses of long to middle wavelength-sensitive visual pigments of common marmoset (Callithrix jacchus). , 2001, Gene.

[173]  D. Oprian,et al.  Salamander UV cone pigment: Sequence, expression, and spectral properties , 2001, Visual Neuroscience.

[174]  G. H. Jacobs,et al.  Photopigments and colour vision in New World monkeys from the family Atelidae , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[175]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[176]  N. Dominy,et al.  Ecological importance of trichromatic vision to primates , 2001, Nature.

[177]  Y. Koutalos,et al.  Vertebrate Photoreceptors , 2001, Progress in Retinal and Eye Research.

[178]  S. Yokoyama,et al.  Genetics and evolution of ultraviolet vision in vertebrates , 2000, FEBS letters.

[179]  J. Bowmaker,et al.  A Fully Functional Rod Visual Pigment in a Blind Mammal , 2000, The Journal of Biological Chemistry.

[180]  Á. Szél,et al.  Photoreceptor cells in the Xenopus retina , 2000, Microscopy research and technique.

[181]  P. Robinson,et al.  Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth , 2000, Visual Neuroscience.

[182]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[183]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[184]  J D Mollon,et al.  Catarrhine photopigments are optimized for detecting targets against a foliage background. , 2000, The Journal of experimental biology.

[185]  B. Röll Gecko vision—visual cells, evolution, and ecological constraints , 2000, Journal of neurocytology.

[186]  J D Mollon,et al.  Chromaticity as a signal of ripeness in fruits taken by primates. , 2000, The Journal of experimental biology.

[187]  N. Blow,et al.  Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[188]  T. Cronin,et al.  Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. , 2000, Biochemistry.

[189]  I. Cuthill,et al.  Visual pigments, cone oil droplets and ocular media in four species of estrildid finch , 2000, Journal of Comparative Physiology A.

[190]  B. Benecke,et al.  The Vertebrate 7S K RNA Separates Hagfish (Myxine glutinosa) and Lamprey (Lampetra fluviatilis) , 2000, Journal of Molecular Evolution.

[191]  N. Okamoto,et al.  Molecular cloning of fresh water and deep‐sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation 1 , 2000, FEBS letters.

[192]  S. Morris,et al.  Lower Cambrian vertebrates from south China , 1999, Nature.

[193]  D. Baylor,et al.  Spectral tuning in salamander visual pigments studied with dihydroretinal chromophores. , 1999, Biophysical journal.

[194]  I. Potter,et al.  The Ocular Morphology of the Southern Hemisphere Lamprey Geotria australis Gray, with Special Reference to Optical Specialisations and the Characterisation and Phylogeny of Photoreceptor Types , 1999, Brain, Behavior and Evolution.

[195]  E. Loew,et al.  The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius) , 1999, The Journal of experimental biology.

[196]  J. Mollon,et al.  The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. , 1999, Genome research.

[197]  N. Blow,et al.  Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[198]  R. Foster,et al.  Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[199]  R. Foster,et al.  Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[200]  Y. Tsukahara,et al.  Primary structure of a visual pigment in bullfrog green rods , 1999, FEBS letters.

[201]  F. Tokunaga,et al.  Evolution of visual pigments in geckos , 1999, FEBS letters.

[202]  G. H. Jacobs,et al.  Cone receptor variations and their functional consequences in two species of hamster , 1999, Visual Neuroscience.

[203]  R. Foster,et al.  Light detection in a 'blind' mammal , 1998, Nature Neuroscience.

[204]  J. Sullivan,et al.  28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. , 1998, Molecular biology and evolution.

[205]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[206]  J. Mollon,et al.  Molecular evolution of trichromacy in primates , 1998, Vision Research.

[207]  D M Sherry,et al.  Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina , 1998, Visual Neuroscience.

[208]  N. Marshall,et al.  The eyes of deep-sea fish I: Lens pigmentation, tapeta and visual pigments , 1998, Progress in Retinal and Eye Research.

[209]  S. Yokoyama,et al.  Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). , 1998, Gene.

[210]  L. Peichl,et al.  Absence of short‐wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia) , 1998, The European journal of neuroscience.

[211]  J. Partridge,et al.  Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.) , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[212]  R. Foster Shedding Light on the Biological Clock , 1998, Neuron.

[213]  A. Janke,et al.  The mitochondrial DNA molecule of the hagfish (myxine glutinosa) and vertebrate phylogeny , 1998, Journal of Molecular Evolution.

[214]  G H Jacobs,et al.  The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.

[215]  D M Hunt,et al.  The visual pigments of the bottlenose dolphin (Tursiops truncatus) , 1998, Visual Neuroscience.

[216]  F. Tokunaga,et al.  Primary structure and characterization of a bullfrog visual pigment contained in small single cones. , 1998, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[217]  S. Kawamura,et al.  Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.

[218]  S. Kawamura,et al.  Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis) , 1998, Vision Research.

[219]  J. I. Fasick,et al.  Mechanism of spectral tuning in the dolphin visual pigments. , 1998, Biochemistry.

[220]  A. Janke,et al.  The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles). , 1997, Molecular biology and evolution.

[221]  C. B. Renaud Conservation status of Northern Hemisphere lampreys (Petromyzontidae) , 1997 .

[222]  J. Nathans,et al.  Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[223]  J. Bowmaker,et al.  Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds , 1997, Vision Research.

[224]  P. Röhlich,et al.  The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning electron microscopic and immunocytochemical study , 1997, Journal of Comparative Physiology A.

[225]  S. Kawamura,et al.  Expression of visual and nonvisual opsins in American chameleon , 1997, Vision Research.

[226]  S. Yokoyama,et al.  Molecular evolution of the rhodopsin gene of marine lamprey, Petromyzon marinus. , 1997, Gene.

[227]  J. Lim,et al.  A second type of rod opsin cDNA from the common carp (Cyprinus carpio). , 1997, Biochimica et biophysica acta.

[228]  S. Buck Influence of rod signals on hue perception: evidence from successive scotopic contrast , 1997, Vision Research.

[229]  J. Partridge,et al.  Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[230]  U. Griebel,et al.  Color Vision in the Manatee (Trichechus manatus) , 1996, Vision Research.

[231]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[232]  G. H. Jacobs,et al.  Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[233]  M. Vorobyev,et al.  Colour vision as an adaptation to frugivory in primates , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[234]  D. Hunt,et al.  Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal , 1996, Vision Research.

[235]  Moya M. Smith,et al.  Scales of thelodont and shark-like fishes from the Ordovician of Colorado , 1996, Nature.

[236]  G. H. Jacobs Primate photopigments and primate color vision. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[237]  J. Partridge,et al.  The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[238]  J. Phillips,et al.  Characterization of an ultraviolet photoreception mechanism in the retina of an amphibian, the axolotl (Ambystoma mexicanum) , 1995, Neuroscience Letters.

[239]  L. Fleishman,et al.  Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis , 1995, Journal of Comparative Physiology A.

[240]  M. Hasegawa,et al.  Relationship among coelacanths, lungfishes, and tetrapods: A phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences , 1994, Journal of Molecular Evolution.

[241]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[242]  B. Stabell,et al.  Mechanisms of chromatic rod vision in scotopic illumination , 1994, Vision Research.

[243]  J. Bowmaker,et al.  Visual pigments and the photic environment: The cottoid fish of Lake Baikal , 1994, Vision Research.

[244]  J. Partridge,et al.  Opsin substitution induced in retinal rods of the eel (Anguilla anguilla ( L.)): a model for G -protein-linked receptors , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[245]  J. Jeanny,et al.  Presence and foveal enrichment of rod opsin in the “all cone” retina of the American chameleon , 1993, The Anatomical record.

[246]  Zhe‐Xi Luo,et al.  Adelobasileus from the Upper Triassic of West Texas: the oldest mammal , 1993 .

[247]  G. H. Jacobs,et al.  Photopigments and color vision in the nocturnal monkey,Aotus , 1993, Vision Research.

[248]  D. Oprian,et al.  Identification of the Cl(-)-binding site in the human red and green color vision pigments. , 1993, Biochemistry.

[249]  G. H. Jacobs,et al.  On the identity of the cone types of the rat retina. , 1993, Experimental eye research.

[250]  E. Nevo,et al.  Visual system of a naturally microphthalmic mammal: The blind mole rat, Spalax ehrenbergi , 1993, The Journal of comparative neurology.

[251]  Eviatar Nevo,et al.  Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal , 1993, Nature.

[252]  R. Foster,et al.  Vitamin A2-based visual pigments in fully terrestrial vertebrates , 1992, Vision Research.

[253]  G. H. Jacobs,et al.  Cone photopigments in nocturnal and diurnal procyonids , 1992, Journal of Comparative Physiology A.

[254]  J. Kleinschmidt,et al.  Anion sensitivity and spectral tuning of cone visual pigments in situ. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[255]  G. S. Whitt,et al.  Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. , 1992, Science.

[256]  Y. Fukada,et al.  Cone visual pigments are present in gecko rod cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[257]  G. H. Jacobs,et al.  The all-cone retina of the garter snake: spectral mechanisms and photopigment , 1992, Journal of Comparative Physiology A.

[258]  Y. Fukada,et al.  Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[259]  J. Mollon,et al.  Dichromats detect colour-camouflaged objects that are not detected by trichromats , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[260]  J D Mollon,et al.  The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. , 1992, The EMBO journal.

[261]  Jeremy Nathans,et al.  Absorption spectra of human cone pigments , 1992, Nature.

[262]  J. Mollon,et al.  Sequence divergence and copy number of the middle- and long-wave photopigment genes in old world monkeys , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[263]  V. Govardovskii,et al.  Cones in the retina of the Mongolian gerbil,Meriones unguiculatus: an immunocytochemical and electrophysiological study , 1992, Vision Research.

[264]  Eberhart Zrenner,et al.  Is colour vision possible with only rods and blue-sensitive cones? , 1991, Nature.

[265]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[266]  J. Gordon,et al.  Deep Demersal Fish Assemblage Structure in the Porcupine Seabight (Eastern North Atlantic): Results of Single Warp Trawling at Lower Slope to Abyssal Soundings , 1991, Journal of the Marine Biological Association of the United Kingdom.

[267]  J. Gordon,et al.  Deep Demersal Fish Assemblage Structure in the Porcupine Seabight (Eastern North Atlantic): Slope Sampling By Three Different Trawls Compared , 1991, Journal of the Marine Biological Association of the United Kingdom.

[268]  J D Mollon,et al.  Photosensitive and photostable pigments in the retinae of Old World monkeys. , 1991, The Journal of experimental biology.

[269]  E. Carmack,et al.  Deep-water renewal and biological production in Lake Baikal , 1991, Nature.

[270]  E. Loew,et al.  Histology and microspectrophotometry of the photoreceptors of a crocodilian, Alligator mississippiensis , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[271]  P. Rakić,et al.  Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[272]  K. Rubinson The developing visual system and metamorphosis in the lamprey. , 1990, Journal of neurobiology.

[273]  T. Ohtsuka,et al.  Monoclonal antibody labels both rod and cone outer segments of turtle photoreceptors. , 1990, Experimental eye research.

[274]  R. Heilig,et al.  A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. , 1990, Genomics.

[275]  A. Whitmore,et al.  Seasonal variation in cone sensitivity and short-wave absorbing visual pigments in the rudd Scardinius erythrophthalmus , 1989, Journal of Comparative Physiology A.

[276]  J. Lythgoe,et al.  Visual pigments and the acquisition of visual information. , 1989, The Journal of experimental biology.

[277]  J. Mollon "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. , 1989, The Journal of experimental biology.

[278]  K. Rubinson,et al.  Neural differentiation in the retina of the larval sea lamprey (Petromyzon marinus) , 1989, Visual Neuroscience.

[279]  L. Peichl,et al.  Topography of cones and rods in the tree shrew retina , 1989, The Journal of comparative neurology.

[280]  A. Motulsky,et al.  Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[281]  J. D. Mollon,et al.  Polymorphism of visual pigments in a callitrichid monkey , 1988, Vision Research.

[282]  G. H. Jacobs,et al.  Spectral mechanisms in the tree squirrel retina , 1988, Journal of Comparative Physiology A.

[283]  J. Nathans,et al.  Molecular genetics of inherited variation in human color vision. , 1986, Science.

[284]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[285]  T. Ohtsuka Relation of spectral types to oil droplets in cones of turtle retina. , 1985, Science.

[286]  T Ohtsuka,et al.  Spectral sensitivities of seven morphological types of photoreceptors in the retina of the turtle, Geoclemys reevesii , 1985, The Journal of comparative neurology.

[287]  R. Foster,et al.  The involvement of a rhodopsin-like photopigment in the photoperiodic response of the Japanese quail , 1985, Journal of Comparative Physiology A.

[288]  J. Lythgoe,et al.  Rhodopsin-like sensitivity of extra-retinal photoreceptors mediating the photoperiodic response in quail , 1985, Nature.

[289]  L. E. Lipetz Pigment types, densities and concentrations in cone oil droplets ofEmydoidea blandingii , 1984, Vision Research.

[290]  J. Mollon,et al.  Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[291]  V. Govardovskii,et al.  Visual cells and visual pigments of the lamprey,Lampetra fluviatilis , 1984, Journal of Comparative Physiology A.

[292]  P. Herring The spectral characteristics of luminous marine organisms , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[293]  S. Fisher,et al.  The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi , 1983, The Journal of comparative neurology.

[294]  H. Ripps,et al.  The visual cells of the skate retina: Structure, histochemistry, and disc‐shedding properties , 1983, The Journal of comparative neurology.

[295]  D. Odell,et al.  The photoreceptors of the west indian manatee , 1982, Journal of morphology.

[296]  J. Hailman Ecology of Vision , 1981 .

[297]  I. Potter The Petromyzoniformes with particular reference to paired species , 1980 .

[298]  R. Tootell,et al.  Spectral components in theb-wave of the ground squirrel electroretinogram , 1979, Vision Research.

[299]  P. A. Prince,et al.  Data on the adult marine and migratory phases in the life cycle of the southern hemisphere lamprey, Geotria australis Gray , 1979, Environmental Biology of Fishes.

[300]  D. Dickson,et al.  Retinal development in the lamprey (Petromyzon marinus L.): premetamorphic ammocoete eye. , 1979, The American journal of anatomy.

[301]  J. Bowmaker,et al.  Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl) , 1978, Vision Research.

[302]  F. Tesch The Eel: Biology and Management of Anguillid Eels , 1977 .

[303]  F. I. Hárosi Absorption spectra and linear dichroism of some amphibian photoreceptors , 1975, The Journal of general physiology.

[304]  M. Sanders Handbook of Sensory Physiology , 1975 .

[305]  N. A. Locket Possible Discontinuous Retinal Rod Outer Segment Formation in Latimeria chalumnae , 1973, Nature.

[306]  N. Daw,et al.  Cat colour vision: evidence for more than one cone process , 1970, The Journal of physiology.

[307]  John E. Dowling,et al.  Visual Adaptation in the Retina of the Skate , 1970, The Journal of general physiology.

[308]  L. Laporte,et al.  Congruent fossil communities from Ordovician and Devonian carbonates of New York , 1970 .

[309]  N. Daw,et al.  Cat colour vision: one cone process or several? , 1969, The Journal of physiology.

[310]  Roger Conant,et al.  A Field Guide to Reptiles and Amphibians , 1959 .

[311]  H. Barlow,et al.  Purkinje Shift and Retinal Noise , 1957, Nature.

[312]  H. W. Shimer Adaptations to Aquatic, Arboreal, Fossorial and Cursorial Habits in Mammals. III. Fossorial Adaptations , 1903, The American Naturalist.

[313]  A. Dickson On Evolution , 1884, Science.

[314]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[315]  S. Yokoyama,et al.  Evolutionary dynamics of rhodopsin type 2 opsins in vertebrates. , 2010, Molecular biology and evolution.

[316]  R. Lucas,et al.  Melanopsin and inner retinal photoreception , 2009, Cellular and Molecular Life Sciences.

[317]  R. Foster The ‘Third’ Photoreceptor System of the Eye – Photosensitive Retinal Ganglion Cells , 2009 .

[318]  Russell G Foster,et al.  Light, photoreceptors, and circadian clocks. , 2007, Methods in molecular biology.

[319]  M. Wilkinson,et al.  Supplemental data : Molecular evidence for dim-light vision in the last common ancestor of the vertebrates , 2007 .

[320]  Shaun P. Collin,et al.  Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814 , 2006, Journal of Comparative Physiology A.

[321]  J. Lythgoe,et al.  Visual pigments in the individual rods of deep-sea fishes , 2004, Journal of Comparative Physiology A.

[322]  J. Bowmaker,et al.  Visual pigments and oil droplets in the penguin,Spheniscus humboldti , 2004, Journal of Comparative Physiology A.

[323]  J. Lythgoe,et al.  Interspecific variation in the visual pigments of deep-sea fishes , 2004, Journal of Comparative Physiology A.

[324]  L. Peichl,et al.  Colour vision in aquatic mammals—facts and open questions , 2003 .

[325]  G. H. Jacobs,et al.  Opsin gene and photopigment polymorphism in a prosimian primate , 2002, Vision Research.

[326]  Robert L. Carroll,et al.  Patterns and Processes of Vertebrate Evolution , 1997 .

[327]  S. Robinson Early vertebrate colour vision , 1994, Nature.

[328]  Michael J. Benton,et al.  The fossil record 2 , 1993 .

[329]  David L. Dilcher,et al.  The fossil record , 1992 .

[330]  H. Cole Developments in deep-sea biology , 1980 .

[331]  F. Crescitelli,et al.  The Visual Cells and Visual Pigments of the Vertebrate Eye , 1972 .

[332]  R. Davenport The Eye and Vision , 1960, Nature.

[333]  R. A. Morton,et al.  Visual pigments. , 1957, Fortschritte der Chemie organischer Naturstoffe = Progress in the chemistry of organic natural products. Progres dans la chimie des substances organiques naturelles.

[334]  Livia S. Carvalho,et al.  The FASEB Journal • Research Communication Functional characterization, tuning, and regulation , 2022 .

[335]  B. Burke,et al.  Where Can I Find out More? , 2022 .