A COMPACT HOT-NOZZLE FOURIER-TRANSFORM MICROWAVE SPECTROMETER

A newly constructed pulsed nozzle, Fourier‐transform microwave spectrometer utilizes a Fabry–Perot cavity consisting of spherical resonators having diameters of only 10 cm. Tests of this very compact‐cavity system show that its sensitivity is only slightly lower than that of a comparably configured system of the Balle–Flygare design having resonators with diameters of 36 cm. With a volume 50 times smaller than in conventional systems, the compact cavity also requires a much smaller vacuum chamber which can be pumped by a relatively small 6 in. diffusion pump. The system includes an integral ceramic nozzle which can be heated to temperatures above 1000 °C. Spectrometer characteristics have been demonstrated by means of experiments on OCS isotopomers in ground and excited vibrational states, ArOCS complexes, and chloroketene, a reactive intermediate formed by pyrolysis of chloroacetylchloride.

[1]  E. Kerstel,et al.  Campargue-type supersonic beam sources: Absolute intensities, skimmer transmission and scaling laws for mono-atomic gases He, Ne and Ar , 1985 .

[2]  R. Suenram,et al.  Pulsed beam Fourier transform microwave measurements on OCS and rare gas complexes of OCS with Ne, Ar, and Kr , 1987 .

[3]  D. Levy,et al.  Laser Spectroscopy of Cold Gas-Phase Molecules , 1980 .

[4]  Roger E Bumgarner,et al.  Microwave spectra and structure of HI–HF complexes , 1987, The Journal of Chemical Physics.

[5]  Y. Ohshima,et al.  Fourier‐transform microwave spectroscopy of triplet carbon monoxides, C2O, C4O, C6O, and C8O , 1995 .

[6]  E. J. Campbell,et al.  Rotational spectra and molecular structures of ArHBr and KrHBr , 1980 .

[7]  G. T. Fraser,et al.  Microwave spectrum, structure, and electric dipole moment of ArCH3OH , 1989 .

[8]  A. Legon PULSED-NOZZLE, FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF WEAKLY BOUND DIMERS , 1983 .

[9]  E. J. Campbell,et al.  The gas dynamics of a pulsed supersonic nozzle molecular source as observed with a Fabry–Perot cavity microwave spectrometer , 1981 .

[10]  H. S. Gutowsky,et al.  Rotational spectra of the ∑ bend states of Ar–H/DCl and the ∑ stretch of Ar–HCl , 1991 .

[11]  D. Clouthier,et al.  A pyrolysis jet spectroscopic study of the rotationally resolved electronic spectrum of dichlorocarbene , 1991 .

[12]  J. Grabow,et al.  Notizen: A Pulsed Molecular Beam Microwave Fourier Transform Spectrometer with Parallel Molecular Beam and Resonator Axes , 1990 .

[13]  N. Westwood,et al.  The microwave spectrum of an unstable molecule: Chloroketene ClHCCO , 1983 .

[14]  Wolfgang Stahl,et al.  An automatic molecular beam microwave Fourier transform spectrometer , 1990 .

[15]  E. J. Campbell,et al.  Rotational Zeeman effect in ArHCl and ArDF , 1983 .

[16]  Yunjie Xu,et al.  The rotational spectrum of the isotopically substituted van der Waals complex ArOCS, obtained using a pulsed beam microwave Fourier transform spectrometer , 1992 .

[17]  R. L. Kuczkowski,et al.  The microwave spectrum of argon-phosphorus trifluoride , 1987 .

[18]  J. R. Pierce,et al.  Scientific foundations of vacuum technique , 1949 .

[19]  W. Flygare,et al.  Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source , 1981 .

[20]  E. J. Campbell The Theory of Pulsed Fourier Transform Microwave Spectroscopy Carried out in a Fabry-Perot Cavity , 1981 .

[21]  E. J. Campbell,et al.  The rotational Zeeman effect in the ArOCS van der Waals complex , 1983 .

[22]  Y. Ohshima,et al.  Rotational spectra, structure, and intramolecular force field of the Hg–OCS van der Waals complex , 1991 .

[23]  G. McClelland,et al.  Vibrational and rotational relaxation of iodine in seeded supersonic beams , 1979 .

[24]  Y. Hirahara,et al.  Pulsed‐discharge‐nozzle Fourier‐transform microwave spectroscopy of HC3S(2Πr) and HC4S(2Πi) , 1994 .

[25]  E. J. Campbell Inversion of time domain signals from a Balle–Flygare type microwave spectrometer , 1993 .

[26]  Songlin Xu,et al.  Production of Halomethylenes in Free-Jet Expansions from a Hot Nozzle: Identification and Characterization of HCBr and DCBr by Laser-Induced Fluorescence Excitation Spectroscopy , 1994 .

[27]  G. T. Fraser,et al.  Pulsed‐nozzle Fourier‐transform microwave spectroscopy of laser‐vaporized metal oxides: Rotational spectra and electric dipole moments of YO, LaO, ZrO, and HfO , 1990 .

[28]  H. S. Gutowsky,et al.  The silicon-carbon double bond: theory takes a round , 1989 .

[29]  H. Clauberg,et al.  Mass and photoelectron spectroscopy of C3H2. .DELTA.Hf of singlet carbenes deviate from additivity by their singlet-triplet gaps , 1992 .

[30]  E. J. Campbell,et al.  A new method for observing the rotational spectra of weak molecular complexes: KrHCl , 1979 .

[31]  Wolfgang Stahl,et al.  A Molecular Beam Microwave Fourier Transform (MB-MWFT) Spectrometer with an Electric Discharge Nozzle , 1991 .