A variational approach to the sum splitting scheme.

Nonlinear parabolic equations are frequently encountered in applications and efficient approximating techniques for their solution are of great importance. In order to provide an effective scheme for the temporal approximation of such equations, we present a sum splitting scheme that comes with a straight forward parallelization strategy. The convergence analysis is carried out in a variational framework that allows for a general setting and, in particular, nontrivial temporal coefficients. The aim of this work is to illustrate the significant advantages of a variational framework for operator splittings and use this to extend semigroup based theory for this type of scheme.

[1]  Alexander Ostermann,et al.  Dimension splitting for evolution equations , 2008, Numerische Mathematik.

[2]  R. Temam Sur la stabilité et la convergence de la méthode des pas fractionnaires , 1968 .

[3]  W. Hundsdorfer,et al.  Modified Douglas splitting methods for reaction–diffusion equations , 2015, 1512.01445.

[4]  V. Barbu Nonlinear Semigroups and di erential equations in Banach spaces , 1976 .

[5]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[6]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[7]  J. Vázquez The Porous Medium Equation , 2006 .

[8]  Etienne Emmrich,et al.  Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator , 2009 .

[9]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[10]  Pavel Drábek,et al.  Quasilinear Elliptic Equations with Degenerations and Singularities , 1997 .

[11]  Eskil Hansen,et al.  Convergence analysis of domain decomposition based time integrators for degenerate parabolic equations , 2017, Numerische Mathematik.

[12]  N. Papageorgiou,et al.  Applied Nonlinear Functional Analysis , 2018 .

[13]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[14]  H. Gajewski,et al.  Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .

[15]  April VARIABLE TIME-STEP θ-SCHEME FOR NONLINEAR EVOLUTION EQUATIONS GOVERNED BY A MONOTONE OPERATOR , 2009 .

[16]  Jacques-Louis Lions,et al.  Some non-linear evolution equations , 1965 .

[17]  Junping Wang,et al.  Domain Decomposition Operator Splittings for the Solution of Parabolic Equations , 1998, SIAM J. Sci. Comput..

[18]  E. Emmrich Variable time-step ϑ-scheme for nonlinear evolution equations governed by a monotone operator , 2009 .

[19]  Etienne Emmrich,et al.  Stiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator , 2009, Math. Comput..

[20]  M. Eisenmann Methods for the temporal approximation of nonlinear, nonautonomous evolution equations , 2019 .

[21]  Etienne Emmrich Two-step Bdf Time Discretisation of Nonlinear Evolution Problems Governed by Monotone Operators with Strongly Continuous Perturbations , 2009, Comput. Methods Appl. Math..

[22]  Tony Stillfjord,et al.  Convergence of the implicit-explicit Euler scheme applied to perturbed dissipative evolution equations , 2013, Math. Comput..

[23]  Gunnar Aronsson,et al.  Fast/Slow Diffusion and Growing Sandpiles , 1996 .

[24]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[25]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[26]  E. Hansen,et al.  Additive domain decomposition operator splittings—convergence analyses in a dissipative framework , 2015, 1512.05941.

[27]  P.N. VABISHCHEVICH Domain Decomposition Methods With Overlapping Subdomains For The Time-Dependent Problems Of Mathematical Physics , 2008 .

[28]  D. Aronson The porous medium equation , 1986 .

[29]  Mechthild Thalhammer,et al.  Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations , 2013 .