Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes.

[1]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[2]  Arvind Agarwal,et al.  Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. , 2007, Biomaterials.

[3]  A. Boskey,et al.  Release of gentamicin from a tricalcium phosphate bone implant , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[4]  R. G. Richards,et al.  Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. , 2006, Journal of biomedical materials research. Part A.

[5]  D. Pienkowski,et al.  Augmentation of acrylic bone cement with multiwall carbon nanotubes. , 2006, Journal of biomedical materials research. Part A.

[6]  R. Oreffo,et al.  Osteoprogenitor response to semi-ordered and random nanotopographies. , 2006, Biomaterials.

[7]  T. Desai,et al.  Nanostructured surfaces for bone biotemplating applications , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[8]  C. Wilkinson,et al.  Osteoprogenitor response to defined topographies with nanoscale depths. , 2006, Biomaterials.

[9]  V. Lehto,et al.  Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[10]  Eugeniu Balaur,et al.  Wetting behaviour of layers of TiO2 nanotubes with different diameters , 2005 .

[11]  Eugeniu Balaur,et al.  Tailoring the wettability of TiO2 nanotube layers , 2005 .

[12]  Sungho Jin,et al.  Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. , 2005, Biomaterials.

[13]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[14]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[15]  K. Neoh,et al.  Antibacterial activity of cloth functionalized with N-alkylated poly(4-vinylpyridine). , 2004, Journal of biomedical materials research. Part A.

[16]  J R van Horn,et al.  Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. , 2004, Biomaterials.

[17]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[18]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[19]  Alexander M. Klibanov,et al.  Designing surfaces that kill bacteria on contact , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. M. Barrales-rienda,et al.  Validation and in vitro characterization of antibiotic-loaded bone cement release. , 2000, International journal of pharmaceutics.

[21]  M. Yoshinari,et al.  Influence of surface modifications to titanium on oral bacterial adhesion in vitro. , 2000, Journal of biomedical materials research.

[22]  H. C. van der Mei,et al.  Initial adhesion and surface growth of Staphylococcus epidermidis and Pseudomonas aeruginosa on biomedical polymers. , 2000, Journal of biomedical materials research.

[23]  H C van der Mei,et al.  Physico-chemistry of initial microbial adhesive interactions--its mechanisms and methods for study. , 1999, FEMS microbiology reviews.

[24]  Y. An,et al.  Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. , 1998, Journal of biomedical materials research.

[25]  W. Pitt,et al.  Bacterial adhesion to orthopedic implant polymers. , 1996, Journal of biomedical materials research.

[26]  A. Tencer,et al.  Controlled release of antibiotics from coated orthopedic implants. , 1996, Journal of biomedical materials research.

[27]  H. C. van der Mei,et al.  Initial microbial adhesion is a determinant for the strength of biofilm adhesion. , 1995, FEMS microbiology letters.

[28]  D. Seligson,et al.  Timing of wound closure in severe compound fractures. , 1994, Orthopedics.

[29]  D. Seligson,et al.  The role of local antibiotic therapy in the management of compound fractures. , 1993, Clinical orthopaedics and related research.

[30]  S. Nasser Prevention and treatment of sepsis in total hip replacement surgery. , 1992, The Orthopedic clinics of North America.

[31]  S. Furner,et al.  Musculoskeletal Conditions in the United States , 1992 .

[32]  S. Santavirta,et al.  Hip arthroplasty infection. Current concepts. , 1990, Acta orthopaedica Scandinavica.

[33]  A. Kishida,et al.  Optimization of amino group density on surfaces of titanium dioxide nanoparticles covalently bonded to a silicone substrate for antibacterial and cell adhesion activities. , 2006, Journal of biomedical materials research. Part A.

[34]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[35]  Peter W. Swaan,et al.  Microfabricated Porous Silicon Particles Enhance Paracellular Delivery of Insulin Across Intestinal Caco-2 Cell Monolayers , 2004, Pharmaceutical Research.

[36]  M. Yoshinari,et al.  Influence of surface modifications to titanium on antibacterial activity in vitro. , 2001, Biomaterials.

[37]  B D Boyan,et al.  Role of material surfaces in regulating bone and cartilage cell response. , 1996, Biomaterials.