Biologically Inspired Sensing Strategy using Spatial Gradients

To find food, homes, and mates, some animals have adapted special sensing capabilities. Rather than using a passive method, they discharge a signal and then extract the necessary information from the response. More importantly, they use the slope of the detected signal to find the destination of an object. In this paper, similar strategy is mathematically formulated. A perturbation and correlationbased gradient estimation method is developed and used as a sensing strategy. This method allows us to adaptively sense an object in a given environment effectively. The proposed strategy is based on the use of gradient values; rather than instantaneous measurements. Considering the gradient value, the sampling frequency is planned adaptively, i.e., sparse sampling is performed in slowly varying regions, while dense sampling is conducted in rapidly changing regions. Using a temperature sensor, the proposed strategy is verified and its effectiveness is demonstrated.