Structural and electronic properties of magnesium–3D transition metal switchable mirrors

We have observed reversible mirror-to-transparent state switching in a variety of mixed metal thin films containing magnesium and first-row transition elements including Ni, Fe, Co, Mn, and Ti. The very large changes in both reflectance and transmittance on loading these films with hydrogen are accompanied by significant structural and electronic transformations. The valence states and coordination of metal atoms during hydrogen loading were followed using dynamic in situ transmission-mode X-ray absorption spectroscopy. Time-resolved Mg K-edge and Ni, Co, Mn, and Ti L-edge spectra reflect both reversible and irreversible changes in the metal environments. These spectra are compared to those of reference materials and to predictions from calculations.