Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic - Extended Version

Full Intuitionistic Linear Logic (FILL) is multiplicative intuitionistic linear logic extended with par. Its proof theory has been notoriously difficult to get right, and existing sequent calculi all involve inference rules with complex annotations to guarantee soundness and cut-elimination. We give a simple and annotation-free display calculus for FILL which satisfies Belnap's generic cut-elimination theorem. To do so, our display calculus actually handles an extension of FILL, called Bi-Intuitionistic Linear Logic (BiILL), with an `exclusion' connective defined via an adjunction with par. We refine our display calculus for BiILL into a cut-free nested sequent calculus with deep inference in which the explicit structural rules of the display calculus become admissible. A separation property guarantees that proofs of FILL formulae in the deep inference calculus contain no trace of exclusion. Each such rule is sound for the semantics of FILL, thus our deep inference calculus and display calculus are conservative over FILL. The deep inference calculus also enjoys the subformula property and terminating backward proof search, which gives the NP-completeness of BiILL and FILL.

[1]  Gianluigi Bellin,et al.  Subnets of proof-nets in multiplicative linear logic with MIX , 1997, Mathematical Structures in Computer Science.

[2]  Valeria de Paiva,et al.  Full Intuitionistic Linear Logic (extended abstract) , 1993, Ann. Pure Appl. Log..

[3]  Valeria de Paiva,et al.  Cut-Elimination for Full Intuitionistic Linear Logic , 1996 .

[4]  Valeria de Paiva,et al.  A PARIGOT-STYLE LINEAR -CALCULUS FOR FULL INTUITIONISTIC LINEAR LOGIC , 2006 .

[5]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.

[6]  Rajeev Goré,et al.  On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics , 2011, Log. Methods Comput. Sci..

[7]  Patrick Lincoln,et al.  Constant-Only Multiplicative Linear Logic is NP-Complete , 1992, Theor. Comput. Sci..

[8]  Rajeev Goré,et al.  Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic , 2013, CSL 2013.

[9]  Bor-Yuh Evan Chang,et al.  A judgmental analysis of linear logic , 2003 .

[10]  Gavin M. Bierman,et al.  A Note on Full Intuitionistic Linear Logic , 1996, Ann. Pure Appl. Log..

[11]  Andrea Masini,et al.  Experiments in Linear Natural Deduction , 1997, Theor. Comput. Sci..

[12]  Rajeev Goré,et al.  Substructural Logics on Display , 1998, Log. J. IGPL.

[13]  Didier Galmiche,et al.  Proofs, Concurrent Objects, and Computations in a FILL Framework , 1995, OBPDC.

[14]  Kaustuv Chaudhuri The inverse method for intuitionistic linear logic : (the propositional fragment) , 2003 .

[15]  Harold Schellinx,et al.  Some Syntactical Observations on Linear Logic , 1991, J. Log. Comput..

[16]  Heinrich Wansing,et al.  Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..

[17]  Michael Moortgat,et al.  Symmetric Categorial Grammar , 2009, J. Philos. Log..

[18]  Nuel Belnap,et al.  Display logic , 1982, J. Philos. Log..

[19]  R. A. G. Seely,et al.  Weakly distributive categories , 1997 .

[20]  R. Seely,et al.  Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. , 1997 .

[21]  Kai Brünnler,et al.  Deep sequent systems for modal logic , 2009, Arch. Math. Log..

[22]  Rajeev Goré,et al.  Cut-elimination and Proof Search for Bi-Intuitionistic Tense Logic , 2010, Advances in Modal Logic.

[23]  Nuel Belnap,et al.  Linear Logic Displayed , 1989, Notre Dame J. Formal Log..

[24]  M. Kracht Power and Weakness of the Modal Display Calculus , 1996 .

[25]  Valeria de Paiva,et al.  A Formulation of Linear Logic Based on Dependency-Relations , 1997, CSL.

[26]  Rajeev Goré,et al.  Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents , 2008, Advances in Modal Logic.