The future of solid-state electronics

For more than thirty years, the capability of the integrated circuit (IC) — whether it is memory size, processor speed, or cost per transistor — has increased at an exponential rate. This capability increase was achieved through a steady stream of technical innovations in physical sciences, design techniques, and manufacturing methods. However, serious challenges to continued scaling, such as the limits of optical lithography and the complexity of wiring, loom on the horizon. This paper explores the direction in which IC technology is headed, highlights potential roadblocks and possible solutions, and discusses some of the physical considerations that could determine the ultimate limits of integration.

[1]  J. Shott,et al.  A 200 mV self-testing encoder/decoder using Stanford ultra-low-power CMOS , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[2]  Chenming Hu,et al.  A dynamic threshold voltage MOSFET (DTMOS) for ultra-low voltage operation , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[3]  K. Cheung,et al.  Charging damage from plasma enhanced TEOS deposition , 1995, IEEE Electron Device Letters.

[4]  P. K. Roy,et al.  MOS Transistors with Stacked SiO -Ta O -SiO Gate Dielectrics for Giga-Scale Integration of CMOS Technologies , 1998 .

[5]  D. Hwang,et al.  Ultra-thin gate dielectrics: they break down, but do they fail? , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[6]  S. Hauck 2 Asynchronous Design Methodologies : An Overview , 1993 .

[7]  Scott Hauck,et al.  Asynchronous design methodologies: an overview , 1995, Proc. IEEE.

[8]  Y. G. Wey,et al.  Room temperature 0.1 /spl mu/m CMOS technology with 11.8 ps gate delay , 1993, Proceedings of IEEE International Electron Devices Meeting.

[9]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[10]  A. Frommer,et al.  EEPROM/flash sub 3.0 V drain-source bias hot carrier writing , 1995, Proceedings of International Electron Devices Meeting.

[11]  Leonard C. Feldman,et al.  Rapid thermal oxidation of silicon in N2O between 800 and 1200 °C: Incorporated nitrogen and interfacial roughness , 1994 .

[12]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[13]  R. Howard,et al.  Nano-electronics for Advanced Computation and Communication , 1999 .

[14]  James T. Clemens,et al.  Silicon microelectronics technology , 1997, Bell Labs Technical Journal.

[15]  Uming Ko,et al.  Hybrid dual-threshold design techniques for high-performance processors with low-power features , 1997, Proceedings of 1997 International Symposium on Low Power Electronics and Design.

[16]  Alfred E. Dunlop,et al.  Managing complexity in IC design — Past, present, and future , 1997, Bell Labs Technical Journal.

[17]  Dimitri A. Antoniadis,et al.  Back gated CMOS on SOIAS for dynamic threshold voltage control , 1995, Proceedings of International Electron Devices Meeting.

[18]  David L. Windt,et al.  Reduction imaging at 14 nm using multilayer‐coated optics: Printing of features smaller than 0.1 μm , 1990 .

[19]  Karl Hess,et al.  Nonlocal and nonlinear transport in semiconductors: Real-space transfer effects , 1995 .

[20]  Mark R. Pinto,et al.  Scaling the Si metal‐oxide‐semiconductor field‐effect transistor into the 0.1‐μm regime using vertical doping engineering , 1991 .

[21]  Mark R. Pinto,et al.  ULSI technology development by predictive simulations , 1993, Proceedings of IEEE International Electron Devices Meeting.

[22]  K.K. Ng,et al.  Analysis of the gate-voltage-dependent series resistance of MOSFET's , 1986, IEEE Transactions on Electron Devices.

[23]  Minimization of Interfacial Microroughness for 13–60 Å Ultrathin Gate Oxides , 1997 .

[24]  R. Kiehl,et al.  Resonant tunneling transistor with quantum well base and high‐energy injection: A new negative differential resistance device , 1985 .

[25]  J.D. Bude,et al.  Gate capacitance attenuation in MOS devices with thin gate dielectrics , 1996, IEEE Electron Device Letters.

[26]  Zhenan Bao,et al.  Complementary circuits with organic transistors , 1996 .

[27]  J. A. Morton From Physics to function , 1965, IEEE Spectrum.

[28]  A. Agarwal,et al.  Low leakage, ultra-thin gate oxides for extremely high performance sub-100 nm nMOSFETs , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[29]  J. Bude Gate current by impact ionization feedback in sub-micron MOSFET technologies , 1995, 1995 Symposium on VLSI Technology. Digest of Technical Papers.

[30]  R.W. Keyes,et al.  Physical limits in digital electronics , 1975, Proceedings of the IEEE.

[31]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[32]  S. Luryi,et al.  Charge injection logic , 1990 .