Model Selection and Testing by the MDL Principle

[1]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[2]  R. Solomonoff A PRELIMINARY REPORT ON A GENERAL THEORY OF INDUCTIVE INFERENCE , 2001 .

[3]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[4]  Ioan Tabus,et al.  Normalized maximum likelihood model of order-1 for the compression of DNA sequences , 2007, 2007 Data Compression Conference (DCC'07).

[5]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[6]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[7]  P. Grünwald The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .

[8]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[9]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[10]  Seyed Alireza Razavi,et al.  Composite hypothesis testing by optimally distinguishable distributions , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[12]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[13]  Ioan Tabus,et al.  Genome compression using normalized maximum likelihood models for constrained Markov sources , 2008, 2008 IEEE Information Theory Workshop.

[14]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[15]  Jaakko Astola,et al.  Classification and feature gene selection using the normalized maximum likelihood model for discrete regression , 2003, Signal Process..

[16]  Jorma Rissanen,et al.  MDL Denoising , 2000, IEEE Trans. Inf. Theory.

[17]  Ioan Tabus,et al.  An efficient normalized maximum likelihood algorithm for DNA sequence compression , 2005, TOIS.

[18]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[19]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[20]  Vijay Balasubramanian,et al.  Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions , 1996, Neural Computation.

[21]  Nikolai K. Vereshchagin,et al.  Kolmogorov's structure functions and model selection , 2002, IEEE Transactions on Information Theory.

[22]  Jorma Rissanen,et al.  Information and Complexity in Statistical Modeling , 2006, ITW.

[23]  Ioan Tabus,et al.  DNA sequence compression using the normalized maximum likelihood model for discrete regression , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[24]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[25]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[26]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[27]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences: statistical considerations , 1969, JACM.