Channeling Projects at Lnf:. from Crystal Undulators to Capillary Waveguides

Frascati's National Laboratories (LNF INFN) are well known in the world for pioneering research in the particle interaction and synchrotron radiation physics fields. Good experience in designing accelerators, storage rings and beamlines for synchrotron radiation allows presently LNF to be in the frontier for the construction of new X-ray generation sources. This report is an introduction to new research activity "Coherent Scattering Phenomena for Radiations in Solids" started in Frascati within the approved projects SPARC, SPARX and PLASMON-X. The main purpose of the project is to develop research area for studying the channeling phenomena of charged and neutral particles in periodic solid structures.

[1]  W. Panofsky,et al.  SEARCH FOR ENHANCEMENT OF BREMSSTRAHLUNG PRODUCED BY 575-Mev ELECTRONS IN A SINGLE CRYSTAL OF SILICON , 1959 .

[2]  C. N. R. Rao,et al.  Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ , 1999 .

[3]  O. Frisch,et al.  Detection of Coherent Bremsstrahlung from Crystals , 1959 .

[4]  H. Überall,et al.  Coherent radiation sources , 1985 .

[5]  Mauricio Terrones,et al.  Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols , 2001 .

[6]  Anthony K. Cheetham,et al.  Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films , 1998 .

[7]  G. Barbiellini,et al.  MEASUREMENT OF THE POLARIZATION OF THE FRASCATI 1-Gev ELECTRON SYNCHROTRON $gamma$-RAY BEAM FROM A DIAMOND CRYSTAL RADIATOR , 1962 .

[8]  J. Sohn,et al.  Micropatterned vertically aligned carbon-nanotube growth on a Si surface or inside trenches , 2002 .

[9]  G. Palazzi High-Energy Bremsstrahlung and Electron Pair Production in Thin Crystals , 1968 .

[10]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[11]  J. Golovchenko,et al.  Surface Trapped X Rays: Whispering-Gallery Modes at λ = 0.7 Å , 1997 .

[12]  Francesco Flora,et al.  Diffraction of X-ray beams in capillary waveguides , 2000 .

[13]  Sultan B. Dabagov,et al.  Divergence behavior due to surface channeling in capillary optics , 2001 .

[14]  Sultan B. Dabagov,et al.  REVIEWS OF TOPICAL PROBLEMS: Channeling of neutral particles in micro- and nanocapillaries , 2003 .

[15]  G. Barbiellini,et al.  Experimental Evidence for a Quasi-Monochromatic Bremsstrahlung Intensity from the Frascati 1-GeV Electron-Synchrotron. , 1962 .

[16]  G. V. Dedkov Fullerene nanotubes can be used when transporting gamma-quanta, neutrons, ion beams and radiation from relativistic particles , 1998 .

[17]  S B Dabagov,et al.  Observation of Interference Effects at the Focus of an X-ray Lens. , 1995, Journal of synchrotron radiation.

[18]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[19]  I. Pomerančuk,et al.  High energy inelastic diffraction phenomena , 1956 .

[20]  G. Lutz,et al.  Highly-polarized coherent bremsstrahlung from a diamond target in the GeV region , 1966 .

[21]  F. Flora,et al.  Status of the SPARC Project , 2005, Proceedings of the 2005 Particle Accelerator Conference.

[22]  V. A. Murashova,et al.  Coherent and incoherent components of a synchrotron radiation spot produced by separate capillaries. , 2000, Applied optics.

[23]  K. Kondo,et al.  Coherent Bremsstrahlung from Si Single Crystal I. Experiment , 1965 .

[24]  G. Barbiellini,et al.  PRODUCTION OF A QUASI-MONOCHROMATIC $gamma$-RAY BEAM FROM MULTI-Gev ELECTRON ACCELERATORS , 1962 .

[25]  Sultan B. Dabagov,et al.  X-ray channeling in capillary systems , 1995, Optics & Photonics.

[26]  V. G. Kohn,et al.  Coherent Phenomenon in Reflection of Radiation by an Uneven Mirror , 1998 .

[27]  M. Khokonov,et al.  THE RELATIONSHIP OF CHANNELING RADIATION TO THOMSON SCATTERING AND THE RELATIVE EFFICIENCY OF X-RAY PRODUCTION BY INTENSE ELECTRON BEAMS , 1998 .

[28]  V. Letokhov,et al.  Hard X-radiation emitted by a charged particle moving in a carbon nanotube , 1996 .

[29]  Mauricio Terrones,et al.  Enhanced magnetic coercivities in Fe nanowires , 1999 .

[30]  G. Bologna,et al.  Electron Pair Production at High Energy in a Silicon Single Crystal , 1960 .

[31]  Svetlana V. Nikitina,et al.  On the interference of X-rays in multiple reflection optics , 1995 .

[32]  F. Flora,et al.  Status of the sparc-x project , 2005, 2007 IEEE Particle Accelerator Conference (PAC).

[33]  S B Dabagov,et al.  Single-reflection regime of X rays that travel into a monocapillary. , 1999, Applied optics.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  V. Glebov,et al.  CHANNELING OF FAST CHARGED AND NEUTRAL PARTICLES IN NANOTUBES , 1998 .

[36]  H. Űberall HIGH-ENERGY INTERFERENCE EFFECT OF BREMSSTRAHLUNG AND PAIR PRODUCTION IN CRYSTALS , 1956 .

[37]  A. Marcelli,et al.  On propagation of X-rays in capillary channels , 2002 .

[38]  Donald S. Gemmell,et al.  Channeling and related effects in the motion of charged particles through crystals , 1974 .

[39]  H. Überall Polarization of Bremsstrahlung from Monocrystalline Targets , 1957 .

[40]  Sultan B. Dabagov,et al.  Features of synchrotron radiation focusing by separate capillaries of definite geometry , 1998, Optics & Photonics.

[41]  Langer,et al.  Quantum transport in a multiwalled carbon nanotube. , 1996, Physical review letters.

[42]  B. Ferretti Sulla “Bremsstrahlung” nei cristalli , 1950 .

[43]  Sultan B. Dabagov,et al.  Peculiarities of photon transmission through capillary systems , 1998 .

[44]  F. Dyson,et al.  ANISOTROPY OF BREMSSTRAHLUNG AND PAIR PRODUCTION IN SINGLE CRYSTALS , 1955 .

[45]  Andrew G. Glen,et al.  APPL , 2001 .