A digital close range photogrammetric observation system for measuring soil surface morphology during ongoing rainfall

[1]  Baoyuan Liu,et al.  An Instrument With Constant Volume Approach for In Situ Measurement of Surface Runoff and Suspended Sediment Concentration , 2021, Water Resources Research.

[2]  Haijing Shi,et al.  The dynamic process of slope rill erosion analyzed with a digital close range photogrammetry observation system under laboratory conditions , 2020 .

[3]  J. Burkhart,et al.  Time‐Lapse Photogrammetry of Distributed Snow Depth During Snowmelt , 2019, Water Resources Research.

[4]  W. Yao,et al.  Experimental study on soil erosion prediction model of loess slope based on rill morphology , 2019, CATENA.

[5]  Xiaoxia Qi,et al.  Deep belief network based k-means cluster approach for short-term wind power forecasting , 2018, Energy.

[6]  P. Ashmore,et al.  Short communication: Challenges and applications of structure-from-motion photogrammetry in a physical model of a braided river , 2018, Earth Surface Dynamics.

[7]  Li Yan,et al.  Geometric-constrained multi-view image matching method based on semi-global optimization , 2018, Geo spatial Inf. Sci..

[8]  Sara Ibáñez-Asensio,et al.  Quantifying small‐magnitude soil erosion: Geomorphic change detection at plot scale , 2018 .

[9]  H. Momm,et al.  Disaggregating soil erosion processes within an evolving experimental landscape , 2018 .

[10]  Tanachapong Wangchamhan,et al.  Efficient algorithms based on the k-means and Chaotic League Championship Algorithm for numeric, categorical, and mixed-type data clustering , 2017, Expert Syst. Appl..

[11]  S. Filin,et al.  High‐Resolution Measurement of Topographic Changes in Agricultural Soils , 2017 .

[12]  Anette Eltner,et al.  Time lapse structure‐from‐motion photogrammetry for continuous geomorphic monitoring , 2017 .

[13]  J. L. Lerma,et al.  Estimation of small-scale soil erosion in laboratory experiments with Structure from Motion photogrammetry , 2017 .

[14]  W. Yao,et al.  Laboratory investigations of rill dynamics on soils of the Loess Plateau of China , 2017 .

[15]  Ximeng Xu,et al.  Gully morphological characteristics in the loess hilly‐gully region based on 3D laser scanning technique , 2017 .

[16]  Fabio Gabrieli,et al.  A low-cost landslide displacement activity assessment from time-lapse photogrammetry and rainfall data: Application to the Tessina landslide site , 2016 .

[17]  Jun Zhao,et al.  Digital close range photogrammetry for the study of rill development at flume scale , 2016 .

[18]  K. Mair,et al.  Application of open‐source photogrammetric software MicMac for monitoring surface deformation in laboratory models , 2016 .

[19]  W. Yao,et al.  Experimental investigation of morphological characteristics of rill evolution on loess slope , 2016 .

[20]  F. Zheng,et al.  An experimental study of rill erosion and morphology , 2015 .

[21]  S. Nouwakpo,et al.  A Simplified Close-Range Photogrammetric Technique for Soil Erosion Assessment , 2012 .

[22]  D. Rieke-Zapp,et al.  Rill development and soil erosion: a laboratory study of slope and rainfall intensity , 2010 .

[23]  J. Chandler,et al.  Applying close range digital photogrammetry in soil erosion studies , 2010 .

[24]  M. A. Aguilar,et al.  Off-the-shelf laser scanning and close-range digital photogrammetry for measuring agricultural soils microrelief , 2009 .

[25]  Hiroshi Yasuda,et al.  Potential of low cost close‐range photogrammetry system in soil microtopography quantification , 2009 .

[26]  R. Rosenbauer,et al.  A photogrammetric surveying method for field applications , 2009 .

[27]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Manuel A. Aguilar,et al.  Effects of Terrain Morphology, Sampling Density, and Interpolation Methods on Grid DEM Accuracy , 2005 .

[29]  J. Miranda,et al.  Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models , 2005 .

[30]  Mark A. Nearing,et al.  Digital close range photogrammetry for measurement of soil erosion , 2005 .

[31]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[32]  Geert Sterk,et al.  Assessment of soil erosion in cultivated fields using a survey methodology for rills in the Chemoga watershed, Ethiopia , 2003 .

[33]  R. Lal,et al.  Soil erosion and the global carbon budget. , 2003, Environment international.

[34]  James Brasington,et al.  Close range digital photogrammetric analysis of experimental drainage basin evolution , 2003 .

[35]  A. Steegen,et al.  The effect of tillage-induced roughness on runoff and erosion patterns , 2001 .

[36]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Katharina Helming,et al.  Soil roughness and overland flow , 2000 .

[38]  John F. O'Callaghan,et al.  The extraction of drainage networks from digital elevation data , 1984, Comput. Vis. Graph. Image Process..

[39]  Hans P. Moravec Rover Visual Obstacle Avoidance , 1981, IJCAI.

[40]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[41]  Raffaella Brigante,et al.  Measuring rill erosion by laser scanning , 2015 .

[42]  赵军,et al.  Measurement of raindrop physical properties with particleimaging measurement technology , 2015 .

[43]  D. Watson A refinement of inverse distance weighted interpolation , 1985 .

[44]  J. T. Hack,et al.  Stream-profile analysis and stream-gradient index , 1973 .