Present and future applications of Silicon Carbide devices and circuits

Silicon Carbide (SiC) is a wide bandgap semiconductor now reaching maturity. Discrete high-voltage SiC devices are commercially available from several suppliers for low-loss power conversion. Future applications may include integrated circuits for high-temperature and radiation-hard applications. This paper introduces SiC material properties, processing, devices, and circuits.

[1]  Steven L. Garverick,et al.  Extreme temperature 6H‐SiC JFET integrated circuit technology , 2009 .

[2]  J. Rabkowski,et al.  Low-Loss High-Performance Base-Drive Unit for SiC BJTs , 2012, IEEE Transactions on Power Electronics.

[3]  W. J. Choyke,et al.  Silicon carbide : recent major advances , 2004 .

[4]  Carl-Mikael Zetterling,et al.  A 2.8kV, Forward Drop JBS Diode with Low Leakage , 2000 .

[5]  J. Rabkowski,et al.  Design steps towards a 40-kVA SiC inverter with an efficiency exceeding 99.5% , 2012, 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[6]  Carl-Mikael Zetterling,et al.  Process technology for silicon carbide devices , 2002 .

[7]  J. A. Cooper,et al.  Bipolar Integrated Circuits in 4H-SiC , 2011, IEEE Transactions on Electron Devices.

[8]  R. Ghandi,et al.  High-Voltage 4H-SiC PiN Diodes With Etched Junction Termination Extension , 2009, IEEE Electron Device Letters.

[9]  William R. Blood,et al.  MECL system design handbook , 1980 .

[10]  B. Jayant Baliga,et al.  Fundamentals of Power Semiconductor Devices , 2008 .

[11]  A. Hallén,et al.  Radiation-Hard Dielectrics for 4H–SiC: A Comparison Between $\hbox{SiO}_{2}$ and $ \hbox{Al}_{2}\hbox{O}_{3}$ , 2011, IEEE Electron Device Letters.

[12]  Ingemar Lundström,et al.  Twenty-five years of field effect gas sensor research in Linköping , 2007 .

[13]  Michael R. Melloch,et al.  Digital CMOS IC's in 6H-SiC operating on a 5-V power supply , 1998 .

[14]  W. Graham Richards,et al.  Art of electronics , 1983, Nature.

[15]  J.H. Zhao,et al.  Development of 4H-SiC LJFET-Based Power IC , 2008, IEEE Transactions on Electron Devices.

[16]  A. Murphy,et al.  High Temperature Silicon Carbide CMOS Integrated Circuits , 2011 .

[17]  R. Ghandi,et al.  Design and Characterization of High-Temperature ECL-Based Bipolar Integrated Circuits in 4H-SiC , 2012, IEEE Transactions on Electron Devices.

[18]  J. Rabkowski,et al.  Challenges Regarding Parallel Connection of SiC JFETs , 2011, IEEE Transactions on Power Electronics.

[19]  Muhammad Nawaz,et al.  Low-Temperature Annealing of Radiation-Induced Degradation in 4H-SiC Bipolar Junction Transistors , 2010, IEEE Electron Device Letters.

[20]  T. Fujihira Theory of Semiconductor Superjunction Devices , 1997 .

[21]  Olivier Stalter,et al.  Advanced solar power electronics , 2010, 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[22]  M. Melloch,et al.  Monolithic NMOS digital integrated circuits in 6H-SiC , 1994, IEEE Electron Device Letters.

[23]  R. Ghandi,et al.  High-Voltage (2.8 kV) Implantation-Free 4H-SiC BJTs With Long-Term Stability of the Current Gain , 2011, IEEE Transactions on Electron Devices.