Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels

Gaussian processes are machine learning models capable of learning unknown functions in a way that represents uncertainty, thereby facilitating construction of optimal decision-making systems. Motivated by a desire to deploy Gaussian processes in novel areas of science, a rapidly-growing line of research has focused on constructively extending these models to handle non-Euclidean domains, including Riemannian manifolds, such as spheres and tori. We propose techniques that generalize this class to model vector fields on Riemannian manifolds, which are important in a number of application areas in the physical sciences. To do so, we present a general recipe for constructing gauge independent kernels, which induce Gaussian vector fields, i.e. vector-valued Gaussian processes coherent with geometry, from scalar-valued Riemannian kernels. We extend standard Gaussian process training methods, such as variational inference, to this setting. This enables vector-valued Gaussian processes on Riemannian manifolds to be trained using standard methods and makes them accessible to machine learning practitioners.

[1]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[2]  Annika Lang,et al.  Fast generation of isotropic Gaussian random fields on the sphere , 2017, Monte Carlo Methods Appl..

[3]  David Blei,et al.  Hierarchical Inducing Point Gaussian Process for Inter-domain Observations , 2021, AISTATS.

[4]  Ic'iar LLor'ens Jover Geometric deep learning for medium-range weather prediction , 2020 .

[5]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[6]  Marc Peter Deisenroth,et al.  Matern Gaussian processes on Riemannian manifolds , 2020, NeurIPS.

[7]  Marc Peter Deisenroth,et al.  Matern Gaussian Processes on Graphs , 2020, AISTATS.

[8]  Aníbal R. Figueiras-Vidal,et al.  Inter-domain Gaussian Processes for Sparse Inference using Inducing Features , 2009, NIPS.

[9]  Rich Caruana,et al.  Improving Data‐Driven Global Weather Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere , 2020, Journal of Advances in Modeling Earth Systems.

[10]  Willi Freeden,et al.  Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup , 2008, Geosystems Mathematics.

[11]  David Dunson,et al.  Extrinsic Gaussian Processes for Regression and Classification on Manifolds , 2017, Bayesian Analysis.

[12]  X. Emery,et al.  Simulating isotropic vector-valued Gaussian random fields on the sphere through finite harmonics approximations , 2019, Stochastic Environmental Research and Risk Assessment.

[13]  Carl E. Rasmussen,et al.  Gaussian Processes in Reinforcement Learning , 2003, NIPS.

[14]  M. Émery Stochastic Calculus in Manifolds , 1989 .

[15]  H. Hersbach,et al.  The ERA5 Atmospheric Reanalysis. , 2016 .

[16]  Markus Lange-Hegermann,et al.  Linearly Constrained Gaussian Processes with Boundary Conditions , 2020, AISTATS.

[17]  R. Furrer,et al.  A turning bands method for simulating isotropic Gaussian random fields on the sphere , 2019, Statistics & Probability Letters.

[18]  Soukayna Mouatadid,et al.  WeatherBench: A Benchmark Data Set for Data‐Driven Weather Forecasting , 2020, Journal of Advances in Modeling Earth Systems.

[19]  Markus Lange-Hegermann,et al.  Algorithmic Linearly Constrained Gaussian Processes , 2018, NeurIPS.

[20]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[21]  Carl E. Rasmussen,et al.  PILCO: A Model-Based and Data-Efficient Approach to Policy Search , 2011, ICML.

[22]  D. Stroock An Introduction to the Analysis of Paths on a Riemannian Manifold , 2005 .

[23]  Sebastian Scher,et al.  Spherical convolution and other forms of informed machine learning for deep neural network based weather forecasts , 2020, 2008.13524.

[24]  Max Welling,et al.  Gauge Equivariant Convolutional Networks and the Icosahedral CNN 1 , 2019 .

[25]  Jeff G. Schneider,et al.  On the Error of Random Fourier Features , 2015, UAI.

[26]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[27]  Manfred Opper,et al.  The Variational Gaussian Approximation Revisited , 2009, Neural Computation.

[28]  James T. Wilson,et al.  Pathwise Conditioning of Gaussian Processes , 2020, J. Mach. Learn. Res..

[29]  Søren Hauberg,et al.  Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models , 2019, AISTATS.

[30]  Nicolas Durrande,et al.  Sparse Gaussian Processes with Spherical Harmonic Features , 2020, ICML.

[31]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[32]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[33]  Oliver Reitebuch,et al.  The Spaceborne Wind Lidar Mission ADM-Aeolus , 2012 .

[34]  James Hensman,et al.  A Framework for Interdomain and Multioutput Gaussian Processes , 2020, ArXiv.

[35]  Max Welling,et al.  Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs , 2020, ICLR.

[36]  D. Nychka Data Assimilation” , 2006 .

[37]  Bohua Zhan,et al.  Smooth Manifolds , 2021, Arch. Formal Proofs.

[38]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[39]  De Barra Introduction to Measure Theory , 1974 .

[40]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[41]  Søren Hauberg,et al.  Geodesic exponential kernels: When curvature and linearity conflict , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Michael A. Osborne,et al.  Gaussian Processes for Global Optimization , 2008 .

[43]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[44]  Max Welling,et al.  Coordinate Independent Convolutional Networks - Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds , 2021, ArXiv.

[45]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[46]  Colin J. Cotter,et al.  Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .

[47]  Aasa Feragen,et al.  Wrapped Gaussian Process Regression on Riemannian Manifolds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.