Research Update: Strategies for improving the stability of perovskite solar cells

The power-conversion efficiency of perovskite solar cells has soared up to 22.1% earlier this year. Within merely five years, the perovskite solar cell can now compete on efficiency with inorganic thin-film technologies, making it the most promising of the new, emerging photovoltaic solar cell technologies. The next grand challenge is now the aspect of stability. The hydrophilicity and volatility of the organic methylammonium makes the work-horse material methylammonium lead iodide vulnerable to degradation through humidity and heat. Additionally, ultraviolet radiation and oxygen constitute stressors which can deteriorate the device performance. There are two fundamental strategies to increasing the device stability: developing protective layers around the vulnerable perovskite absorber and developing a more resilient perovskite absorber. The most important reports in literature are summarized and analyzed here, letting us conclude that any long-term stability, on par with that of inorganic thin-film technologies, is only possible with a more resilient perovskite incorporated in a highly protective device design.

[1]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[2]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[3]  Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[4]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[5]  S. Ito,et al.  Lead-Halide Perovskite Solar Cells by CH3NH3I Dripping on PbI2-CH3NH3I-DMSO Precursor Layer for Planar and Porous Structures Using CuSCN Hole-Transporting Material. , 2015, The journal of physical chemistry letters.

[6]  S. Ito,et al.  Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: Enhancement of perovskite crystal transformation and prohibition of short circuiting , 2014 .

[7]  Yang Yang,et al.  A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells , 2015 .

[8]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[9]  Francesco Di Giacomo,et al.  Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells , 2015 .

[10]  Huawei Zhou,et al.  Low-Temperature Processed and Carbon-Based ZnO/CH3NH3PbI3/C Planar Heterojunction Perovskite Solar Cells , 2015 .

[11]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[12]  Erik M. J. Johansson,et al.  Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. , 2013, Nanoscale.

[13]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[14]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[15]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[16]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[17]  O. Voznyy,et al.  Crosslinked Remote‐Doped Hole‐Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells , 2016, Advanced materials.

[18]  M. Green,et al.  Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation , 2016 .

[19]  Kai Zhu,et al.  Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection , 2016 .

[20]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[21]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[22]  Cinzia Giannini,et al.  Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing. , 2015, The journal of physical chemistry letters.

[23]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[24]  Licheng Sun,et al.  Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode , 2016 .

[25]  Huajun Chen,et al.  Perovskite Solar Cells Employing Dopant‐Free Organic Hole Transport Materials with Tunable Energy Levels , 2016, Advanced materials.

[26]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[27]  Wei Huang,et al.  Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches , 2016 .

[28]  Bo Qu,et al.  Improved hole-transporting property via HAT-CN for perovskite solar cells without lithium salts. , 2015, ACS applied materials & interfaces.

[29]  Peng Gao,et al.  Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells , 2015 .

[30]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[31]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[32]  L. Liao,et al.  Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%. , 2015, ACS applied materials & interfaces.

[33]  Sandeep Kumar Pathak,et al.  Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd‐Doping of Mesostructured TiO2 , 2016 .

[34]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[35]  Zhike Liu,et al.  Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity , 2016, Nature Communications.

[36]  S. Haque,et al.  Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2 , 2015 .

[37]  Meng Zhang,et al.  Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. , 2015, Nano letters.

[38]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[39]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[40]  M. Li,et al.  A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells , 2016 .

[41]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[42]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[43]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[44]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[45]  Chang-Lyoul Lee,et al.  Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer , 2015 .

[46]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[47]  Steffen Meyer,et al.  Copper(I) Iodide as Hole‐Conductor in Planar Perovskite Solar Cells: Probing the Origin of J–V Hysteresis , 2015 .

[48]  Yaoguang Rong,et al.  Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. , 2014, The journal of physical chemistry letters.

[49]  Bei Chu,et al.  Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. , 2015, Nanoscale.

[50]  T. Park,et al.  Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells , 2016 .

[51]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[52]  Yong Qiu,et al.  Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination , 2014 .

[53]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[54]  F. Hui,et al.  Dopant‐Free Spiro‐Triphenylamine/Fluorene as Hole‐Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability , 2016 .

[55]  Nakita K. Noel,et al.  Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[56]  H. Snaith,et al.  Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. , 2014, The journal of physical chemistry letters.

[57]  Mohammad Khaja Nazeeruddin,et al.  Outdoor Performance and Stability under Elevated Temperatures and Long‐Term Light Soaking of Triple‐Layer Mesoporous Perovskite Photovoltaics , 2015 .

[58]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[59]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[60]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[61]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[62]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[63]  Kijung Yong,et al.  Novel CdS Hole-Blocking Layer for Photostable Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[64]  V. Ahmadi,et al.  New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[65]  P. Lund,et al.  Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[66]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[67]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[68]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[69]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[70]  Bo Qu,et al.  A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. , 2014, Chemical communications.

[71]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[72]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[73]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[74]  Nam-Gyu Park,et al.  ORGANOMETAL HALIDE PEROVSKITE PHOTOVOLTAICS: A DIAMOND IN THE ROUGH , 2014 .

[75]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[76]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[77]  D. Scanlon,et al.  (CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics? , 2015, The journal of physical chemistry letters.

[78]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[79]  F. C. Schaefer Synthesis of the s-Triazine System. VI.1 Preparation of Unsymmetrically Substituted s-Triazines by Reaction of Amidine Salts with Imidates , 1962 .

[80]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[81]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[82]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[83]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[84]  Yongqi Dong,et al.  Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment , 2016, Scientific Reports.

[85]  Henry J. Snaith,et al.  Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification , 2016 .

[86]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[87]  X. Ren,et al.  Two‐Inch‐Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization , 2015, Advanced materials.

[88]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[89]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[90]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[91]  S. Ito,et al.  Substrate-preheating Effects on PbI2 Spin Coating for Perovskite Solar Cells via Sequential Deposition , 2015 .

[92]  Neil C. Greenham,et al.  Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3‐xClx Perovskite Solar Cells: Kinetics and Mechanisms , 2016 .

[93]  Yi-Bing Cheng,et al.  Encapsulation for improving the lifetime of flexible perovskite solar cells , 2015 .

[94]  Liyuan Han,et al.  Bifunctional alkyl chain barriers for efficient perovskite solar cells. , 2015, Chemical communications.

[95]  Tao Xu,et al.  Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films. , 2015, Angewandte Chemie.

[96]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[97]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[98]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[99]  Yani Chen,et al.  Efficient and reproducible CH3NH3PbI(3-x)(SCN)x perovskite based planar solar cells. , 2015, Chemical communications.

[100]  Oscar Miguel,et al.  Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact , 2014 .

[101]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[102]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[103]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[104]  M. Ko,et al.  Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. , 2015, ACS applied materials & interfaces.

[105]  Yanhong Luo,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)‐Modified P3HT Hole‐Transporting Material , 2015 .

[106]  N. Zheng,et al.  Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. , 2015, Nanoscale.

[107]  Q. Gong,et al.  A highly efficient mesoscopic solar cell based on CH₃NH₃PbI(3-x)Cl(x) fabricated via sequential solution deposition. , 2014, Chemical communications.

[108]  John Lewis Material challenge for flexible organic devices , 2006 .

[109]  David Cahen,et al.  How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. , 2015, The journal of physical chemistry letters.

[110]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[111]  Jing Xu,et al.  Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. , 2014, Chemical communications.

[112]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[113]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[114]  E. Hey‐Hawkins,et al.  The first depleted heterojunction TiO2-MOF-based solar cell. , 2014, Chemical communications.

[115]  Frederik C. Krebs,et al.  Encapsulation of polymer photovoltaic prototypes , 2006 .

[116]  Rebecca A. Belisle,et al.  Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.

[117]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[118]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[119]  J. Yates,et al.  TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer , 2005 .

[120]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[121]  Shyamtanu Chattoraj,et al.  Pseudohalide (SCN(-))-Doped MAPbI3 Perovskites: A Few Surprises. , 2015, The journal of physical chemistry letters.

[122]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[123]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[124]  Christoph J. Brabec,et al.  Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements , 2004 .

[125]  Zhifu Liu,et al.  Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection , 2013 .

[126]  K. Kawamura,et al.  Effective ionic radii of nitrite and thiocyanate estimated in terms of the Boettcher equation and the Lorentz-Lorenz equation , 1982 .

[127]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[128]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[129]  Michael D. McGehee,et al.  Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells. , 2014, Journal of the American Chemical Society.

[130]  Sandeep Kumar Pathak,et al.  Performance and Stability Enhancement of Dye‐Sensitized and Perovskite Solar Cells by Al Doping of TiO2 , 2014 .

[131]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.