Path Planning Methods for Adaptive Sampling of Environmental and Acoustical Ocean Fields

Adaptive sampling aims to predict the types and locations of additional observations that are most useful for specific objectives, under the constraints of the available observing network. Path planning refers to the computation of the routes of the assets that are part of the adaptive component of the observing network. In this paper, we present two path planning methods based on Mixed Integer Linear Programming (MILP). The methods are illustrated with some examples based on environmental ocean fields and compared to highlight their strengths and weaknesses. The stronger method is further demonstrated on a number of examples covering multi-vehicle and multi-day path planning, based on simulations for the Monterey Bay region. The framework presented is powerful and flexible enough to accommodate changes in scenarios. To demonstrate this feature, acoustical path planning is also discussed