An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte

[1]  Yayuan Liu,et al.  An Autotransferable g‐C3N4 Li+‐Modulating Layer toward Stable Lithium Anodes , 2019, Advanced materials.

[2]  Dingcai Wu,et al.  Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes , 2019, Nature Communications.

[3]  Jinbao Zhao,et al.  Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes. , 2019, ACS applied materials & interfaces.

[4]  J. Choi,et al.  Tuning the Electron Density of Aromatic Solvent for Stable Solid‐Electrolyte‐Interphase Layer in Carbonate‐Based Lithium Metal Batteries , 2018, Advanced Energy Materials.

[5]  Ji‐Guang Zhang,et al.  Dendrite‐Free and Performance‐Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives , 2018 .

[6]  F. Kang,et al.  Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries , 2018, Nature Communications.

[7]  N. Wu,et al.  High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes , 2018 .

[8]  Xiulin Fan,et al.  A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery , 2017 .

[9]  Jingwei Xiang,et al.  A Strategy of Selective and Dendrite-Free Lithium Deposition for Lithium Batteries , 2017 .

[10]  Luyi Yang,et al.  Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li–Electrolyte Interface for Solid State Lithium‐Ion Batteries , 2017 .

[11]  S. Choudhury,et al.  Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries , 2017 .

[12]  Shuru Chen,et al.  Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries , 2017, Nature Communications.

[13]  T. Mallouk,et al.  Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. , 2017, Journal of the American Chemical Society.

[14]  Ravishankar Sundararaman,et al.  Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. , 2017, Angewandte Chemie.

[15]  Rui Zhang,et al.  An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes , 2017, Proceedings of the National Academy of Sciences.

[16]  Ya‐Xia Yin,et al.  Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels , 2017, Advanced materials.

[17]  Xin-Bing Cheng,et al.  Nanodiamonds suppress the growth of lithium dendrites , 2017, Nature Communications.

[18]  Tianyou Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[19]  Yi Cui,et al.  Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. , 2017, Nature nanotechnology.

[20]  X. Tao,et al.  3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries , 2017 .

[21]  J. Connell,et al.  Lithium metal protected by atomic layer deposition metal oxide for high performance anodes , 2017 .

[22]  Qiang Zhang,et al.  Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite‐Free Lithium Metal Anode , 2017 .

[23]  Doron Aurbach,et al.  Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution , 2017 .

[24]  Boyang Liu,et al.  Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode , 2017, Nano Research.

[25]  Yi Cui,et al.  Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix , 2017, Proceedings of the National Academy of Sciences.

[26]  Yan‐Bing He,et al.  Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte , 2017, Advanced materials.

[27]  Zhenan Bao,et al.  Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer. , 2017, Journal of the American Chemical Society.

[28]  Shaomao Xu,et al.  High-capacity, low-tortuosity, and channel-guided lithium metal anode , 2017, Proceedings of the National Academy of Sciences.

[29]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[30]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[31]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[32]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[33]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[34]  Wei Liu,et al.  Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes , 2017, ACS central science.

[35]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[36]  W. Wall,et al.  Determination of Transport Parameters in Liquid Binary Lithium Ion Battery Electrolytes I. Diffusion Coefficient , 2017 .

[37]  Bin Zhu,et al.  Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes , 2017, Advanced materials.

[38]  A. Latz,et al.  Thick electrodes for Li-ion batteries: A model based analysis , 2016 .

[39]  Dingchang Lin,et al.  Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. , 2016, Journal of the American Chemical Society.

[40]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[41]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[42]  J. Qian,et al.  Enhanced Performance of a Lithium-Sulfur Battery Using a Carbonate-Based Electrolyte. , 2016, Angewandte Chemie.

[43]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[44]  T. Leichtweiss,et al.  Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. , 2016, Nature chemistry.

[45]  Samuel S. Cartmell,et al.  Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High‐Concentration Electrolyte Layer , 2016 .

[46]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[47]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[48]  Hongkyung Lee,et al.  Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes , 2015, Scientific Reports.

[49]  John B. Goodenough,et al.  Low‐Cost Hollow Mesoporous Polymer Spheres and All‐Solid‐State Lithium, Sodium Batteries , 2015 .

[50]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[51]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[52]  Jérôme Hugues,et al.  Model‐Based Analysis , 2013 .

[53]  K. Hayamizu Temperature Dependence of Self-Diffusion Coefficients of Ions and Solvents in Ethylene Carbonate, Propylene Carbonate, and Diethyl Carbonate Single Solutions and Ethylene Carbonate + Diethyl Carbonate Binary Solutions of LiPF6 Studied by NMR , 2012 .

[54]  Xiao Xing Liang,et al.  Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte , 2011 .

[55]  Antonio Flores-Tlacuahuac,et al.  Modeling and simulation of lithium-ion batteries , 2011, Comput. Chem. Eng..

[56]  Yuki Yamada,et al.  Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[57]  Xuefeng Wang,et al.  Infrared spectra, structure and bonding in the LiO2, LiO2Li, LiO and Li2O molecules in solid neon , 2009 .

[58]  M. Behm,et al.  Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte , 2008 .

[59]  D. Wheeler,et al.  Modeling of lithium-ion batteries , 2003 .

[60]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[61]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[62]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.