On the recursive sequence $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$
暂无分享,去创建一个
[1] Oscillations for even-order neutral difference equations , 2000 .
[2] G. Ladas,et al. On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .
[3] Wenlei Dong,et al. Oscillatory of unstable type second-order neutral difference equations , 2002 .
[4] Ravi P. Agarwal,et al. Difference equations and inequalities , 1992 .
[5] H. M. El-Owaidy,et al. On asymptotic behaviour of the difference equation xn+1=α+(xn-k/xn) , 2004, Appl. Math. Comput..
[6] G. Ladas. Open problems and conjectures: Progress Report on , 1999 .
[7] Stevo Stevi´c,et al. ON THE RECURSIVE SEQUENCE $x_{n+1}=x_{n-1}/g(x_n)$ , 2002 .
[8] S. Stevo,et al. The recursive sequence xn+1 = g(xn, xn-1)/(A + xn) , 2002, Appl. Math. Lett..
[9] A. M. Ahmed,et al. On asymptotic behaviour of the difference equation $$X_{N + 1} = \alpha + \frac{{X_{N - 1} ^P }}{{X_N ^P }}$$ , 2003 .
[10] R. Devault,et al. On the recursive sequence , 2000 .