暂无分享,去创建一个
Bernd Bischl | Philipp Probst | Jan N. van Rijn | Florian Pfisterer | Andreas Müller | J. N. Rijn | Philipp Probst | B. Bischl | Andreas Müller | Florian Pfisterer
[1] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Combining meta-learning and search techniques to select parameters for support vector machines , 2012, Neurocomputing.
[2] F. Hutter,et al. Practical Automated Machine Learning for the AutoML Challenge 2018 , 2018 .
[3] Bernd Bischl,et al. Tunability: Importance of Hyperparameters of Machine Learning Algorithms , 2018, J. Mach. Learn. Res..
[4] J. L. Hodges,et al. The use of Previous Experience in Reaching Statistical Decisions , 1952 .
[5] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[6] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[7] Bernd Bischl,et al. mlr: Machine Learning in R , 2016, J. Mach. Learn. Res..
[8] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[9] Aaron Klein,et al. Efficient and Robust Automated Machine Learning , 2015, NIPS.
[10] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[11] P. Alam,et al. R , 1823, The Herodotus Encyclopedia.
[12] P. Alam. ‘E’ , 2021, Composites Engineering: An A–Z Guide.
[13] Ricardo Vilalta,et al. Metalearning - Applications to Data Mining , 2008, Cognitive Technologies.
[14] Gideon S. Mann,et al. Efficient Transfer Learning Method for Automatic Hyperparameter Tuning , 2014, AISTATS.
[15] van,et al. Massively collaborative machine learning , 2016 .
[16] Ameet Talwalkar,et al. Non-stochastic Best Arm Identification and Hyperparameter Optimization , 2015, AISTATS.
[17] Ameet Talwalkar,et al. Hyperband: Bandit-Based Configuration Evaluation for Hyperparameter Optimization , 2016, ICLR.
[18] Yoshua Bengio,et al. Algorithms for Hyper-Parameter Optimization , 2011, NIPS.
[19] Kevin Leyton-Brown,et al. Efficient Benchmarking of Hyperparameter Optimizers via Surrogates , 2015, AAAI.
[20] Tsuyoshi Murata,et al. {m , 1934, ACML.
[21] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[22] Lars Schmidt-Thieme,et al. Sequential Model-Free Hyperparameter Tuning , 2015, 2015 IEEE International Conference on Data Mining.
[23] Paul Davidsson,et al. Quantifying the Impact of Learning Algorithm Parameter Tuning , 2006, AAAI.
[24] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[25] Tianqi Chen,et al. XGBoost: A Scalable Tree Boosting System , 2016, KDD.
[26] João Mendes-Moreira,et al. Towards Automatic Generation of Metafeatures , 2016, PAKDD.
[27] Jasper Snoek,et al. Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.
[28] Jan N. van Rijn,et al. Hyperparameter Importance Across Datasets , 2017, KDD.
[29] Frank Hutter,et al. Initializing Bayesian Hyperparameter Optimization via Meta-Learning , 2015, AAAI.
[30] Bernd Bischl,et al. OpenML Benchmarking Suites and the OpenML100 , 2017, ArXiv.
[31] Joaquin Vanschoren,et al. Selecting Classification Algorithms with Active Testing , 2012, MLDM.
[32] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[33] P. Alam. ‘L’ , 2021, Composites Engineering: An A–Z Guide.
[34] P. Alam. ‘Z’ , 2021, Composites Engineering: An A–Z Guide.
[35] Luís Torgo,et al. OpenML: networked science in machine learning , 2014, SKDD.
[36] P. Alam. ‘N’ , 2021, Composites Engineering: An A–Z Guide.
[37] J. N. Rijn,et al. OpenML Benchmarking Suites , 2017, NeurIPS Datasets and Benchmarks.
[38] P. Alam,et al. H , 1887, High Explosives, Propellants, Pyrotechnics.
[39] G. Fitzgerald,et al. 'I. , 2019, Australian journal of primary health.
[40] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[41] Lars Schmidt-Thieme,et al. Learning hyperparameter optimization initializations , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).
[42] Yoshua Bengio,et al. Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..
[43] Bernd Bischl,et al. mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions , 2017, 1703.03373.
[44] M. L. Fisher,et al. An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..
[45] Gavin C. Cawley,et al. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation , 2010, J. Mach. Learn. Res..