An adaptive discontinuous Petrov-Galerkin method for the Grad-Shafranov equation
暂无分享,去创建一个
[1] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[2] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[3] Socratis Petrides. Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems , 2019 .
[4] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[5] Robert D. Moser,et al. A DPG method for steady viscous compressible flow , 2014 .
[6] J. Mora,et al. A 3D DPG Maxwell approach to nonlinear Raman gain in fiber laser amplifiers , 2018, J. Comput. Phys. X.
[7] O. Ghattas,et al. A PDE-constrained optimization approach to the discontinuous Petrov-Galerkin method with a trust region inexact Newton-CG solver , 2014 .
[8] Leszek F. Demkowicz,et al. An adaptive DPG method for high frequency time-harmonic wave propagation problems , 2017, Comput. Math. Appl..
[9] Tzanio V. Kolev,et al. Non-Conforming Mesh Refinement for High-Order Finite Elements , 2019, ArXiv.
[10] L. L. Lao,et al. Equilibrium properties of spherical torus plasmas in NSTX , 2001 .
[11] Antoine J. Cerfon,et al. ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria , 2014, Comput. Phys. Commun..
[12] Weifeng Qiu,et al. An analysis of the practical DPG method , 2011, Math. Comput..
[13] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[14] Robert D. Falgout,et al. hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.
[15] Panayot S. Vassilevski,et al. PARALLEL AUXILIARY SPACE AMG FOR H(curl) PROBLEMS , 2009 .
[16] V. Shafranov. On Magnetohydrodynamical Equilibrium Configurations , 1958 .
[17] Donald G. M. Anderson. Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.
[18] Leszek Demkowicz,et al. An Overview of the Discontinuous Petrov Galerkin Method , 2014 .
[19] Antoine J. Cerfon,et al. Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad-Shafranov equation by extension from polygonal subdomains , 2019, Comput. Phys. Commun..
[20] L. Demkowicz,et al. Discrete least-squares finite element methods , 2017, 1705.02078.
[21] Leszek Demkowicz,et al. A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .
[22] Francesca Rapetti,et al. A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries , 2017, J. Comput. Phys..
[23] Tonatiuh Sánchez-Vizuet,et al. A Hybridizable Discontinuous Galerkin solver for the Grad-Shafranov equation , 2017, Comput. Phys. Commun..
[24] G. Huysmans,et al. MHD stability in X-point geometry: simulation of ELMs , 2007 .
[25] Leszek Demkowicz,et al. A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .
[26] R. Aymar,et al. The ITER design , 2002 .
[27] Peter Wriggers,et al. Nonlinear discontinuous Petrov–Galerkin methods , 2018, Numerische Mathematik.
[28] Barry Koren,et al. A mimetic spectral element solver for the Grad-Shafranov equation , 2015, J. Comput. Phys..
[29] Matthew G. Knepley,et al. Composing Scalable Nonlinear Algebraic Solvers , 2015, SIAM Rev..
[30] Xianzhu Tang,et al. Models of primary runaway electron distribution in the runaway vortex regime , 2017 .
[31] Leslie Greengard,et al. A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..
[32] Jinchao Xu,et al. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..
[33] J. P. Goedbloed,et al. Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation , 1991 .
[34] Harold Grad,et al. HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .
[35] Ngoc Cuong Nguyen,et al. A hybridized discontinuous Petrov–Galerkin scheme for scalar conservation laws , 2012 .
[36] J. Freidberg,et al. “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .
[37] Leszek Demkowicz,et al. A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .
[38] Victor M. Calo,et al. A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..
[39] Nathan V. Roberts,et al. The DPG method for the Stokes problem , 2014, Comput. Math. Appl..
[40] Leszek F. Demkowicz,et al. Construction of DPG Fortin operators for second order problems , 2017, Comput. Math. Appl..
[41] Leszek F. Demkowicz,et al. Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..
[42] A. Bondeson,et al. The CHEASE code for toroidal MHD equilibria , 1996 .
[43] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[44] Carl R. Sovinec,et al. Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..
[45] Homer F. Walker,et al. Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..
[46] Stephen C. Jardin,et al. Computational Methods in Plasma Physics , 2010 .
[47] Nathan V. Roberts,et al. A discontinuous Petrov-Galerkin methodology for adaptive solutions to the incompressible Navier-Stokes equations , 2015, J. Comput. Phys..
[48] Carsten Carstensen,et al. A Posteriori Error Control for DPG Methods , 2014, SIAM J. Numer. Anal..