An adaptive discontinuous Petrov-Galerkin method for the Grad-Shafranov equation

In this work, we propose and develop an arbitrary-order adaptive discontinuous Petrov-Galerkin (DPG) method for the nonlinear Grad-Shafranov equation. An ultraweak formulation of the DPG scheme for the equation is given based on a minimal residual method. The DPG scheme has the advantage of providing more accurate gradients compared to conventional finite element methods, which is desired for numerical solutions to the Grad-Shafranov equation. The numerical scheme is augmented with an adaptive mesh refinement approach, and a criterion based on the residual norm in the minimal residual method is developed to achieve dynamic refinement. Nonlinear solvers for the resulting system are explored and a Picard iteration with Anderson acceleration is found to be efficient to solve the system. Finally, the proposed algorithm is implemented in parallel on MFEM using a domain-decomposition approach, and our implementation is general, supporting arbitrary order of accuracy and general meshes. Numerical results are presented to demonstrate the efficiency and accuracy of the proposed algorithm.

[1]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[2]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[3]  Socratis Petrides Adaptive multilevel solvers for the discontinuous Petrov–Galerkin method with an emphasis on high-frequency wave propagation problems , 2019 .

[4]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[5]  Robert D. Moser,et al.  A DPG method for steady viscous compressible flow , 2014 .

[6]  J. Mora,et al.  A 3D DPG Maxwell approach to nonlinear Raman gain in fiber laser amplifiers , 2018, J. Comput. Phys. X.

[7]  O. Ghattas,et al.  A PDE-constrained optimization approach to the discontinuous Petrov-Galerkin method with a trust region inexact Newton-CG solver , 2014 .

[8]  Leszek F. Demkowicz,et al.  An adaptive DPG method for high frequency time-harmonic wave propagation problems , 2017, Comput. Math. Appl..

[9]  Tzanio V. Kolev,et al.  Non-Conforming Mesh Refinement for High-Order Finite Elements , 2019, ArXiv.

[10]  L. L. Lao,et al.  Equilibrium properties of spherical torus plasmas in NSTX , 2001 .

[11]  Antoine J. Cerfon,et al.  ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria , 2014, Comput. Phys. Commun..

[12]  Weifeng Qiu,et al.  An analysis of the practical DPG method , 2011, Math. Comput..

[13]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[14]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[15]  Panayot S. Vassilevski,et al.  PARALLEL AUXILIARY SPACE AMG FOR H(curl) PROBLEMS , 2009 .

[16]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[17]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[18]  Leszek Demkowicz,et al.  An Overview of the Discontinuous Petrov Galerkin Method , 2014 .

[19]  Antoine J. Cerfon,et al.  Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad-Shafranov equation by extension from polygonal subdomains , 2019, Comput. Phys. Commun..

[20]  L. Demkowicz,et al.  Discrete least-squares finite element methods , 2017, 1705.02078.

[21]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[22]  Francesca Rapetti,et al.  A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries , 2017, J. Comput. Phys..

[23]  Tonatiuh Sánchez-Vizuet,et al.  A Hybridizable Discontinuous Galerkin solver for the Grad-Shafranov equation , 2017, Comput. Phys. Commun..

[24]  G. Huysmans,et al.  MHD stability in X-point geometry: simulation of ELMs , 2007 .

[25]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[26]  R. Aymar,et al.  The ITER design , 2002 .

[27]  Peter Wriggers,et al.  Nonlinear discontinuous Petrov–Galerkin methods , 2018, Numerische Mathematik.

[28]  Barry Koren,et al.  A mimetic spectral element solver for the Grad-Shafranov equation , 2015, J. Comput. Phys..

[29]  Matthew G. Knepley,et al.  Composing Scalable Nonlinear Algebraic Solvers , 2015, SIAM Rev..

[30]  Xianzhu Tang,et al.  Models of primary runaway electron distribution in the runaway vortex regime , 2017 .

[31]  Leslie Greengard,et al.  A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..

[32]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[33]  J. P. Goedbloed,et al.  Isoparametric Bicubic Hermite Elements for Solution of the Grad-Shafranov Equation , 1991 .

[34]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[35]  Ngoc Cuong Nguyen,et al.  A hybridized discontinuous Petrov–Galerkin scheme for scalar conservation laws , 2012 .

[36]  J. Freidberg,et al.  “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .

[37]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[38]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..

[39]  Nathan V. Roberts,et al.  The DPG method for the Stokes problem , 2014, Comput. Math. Appl..

[40]  Leszek F. Demkowicz,et al.  Construction of DPG Fortin operators for second order problems , 2017, Comput. Math. Appl..

[41]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[42]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[43]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[44]  Carl R. Sovinec,et al.  Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..

[45]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[46]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[47]  Nathan V. Roberts,et al.  A discontinuous Petrov-Galerkin methodology for adaptive solutions to the incompressible Navier-Stokes equations , 2015, J. Comput. Phys..

[48]  Carsten Carstensen,et al.  A Posteriori Error Control for DPG Methods , 2014, SIAM J. Numer. Anal..