On the quantum Boltzmann equation near Maxwellian and vacuum

We consider the non-relativistic quantum Boltzmann equation for fermions and bosons. Using the nonlinear energy method and mild formulation, we justify the global well-posedness when the density function is near the global Maxwellian and vacuum. This work is a generalization and adaptation of the classical Boltzmann theory. Our main contribution is a detailed analysis of the nonlinear operator Q in the quantum context. This is the first piece of a long-term project on the quantum kinetic equations.

[1]  Robert M. Strain,et al.  Exponential Decay for Soft Potentials near Maxwellian , 2022 .

[2]  Xuguang Lu Long Time Convergence of the Bose–Einstein Condensation , 2016 .

[3]  M. Pulvirenti,et al.  From the N-body Schrödinger Equation to the Quantum Boltzmann Equation: a Term-by-Term Convergence Result in the Weak Coupling Regime , 2007 .

[4]  A. Nouri,et al.  A Milne problem from a Bose condensate with excitations , 2013 .

[5]  Xuguang Lu,et al.  A Modified Boltzmann Equation for Bose–Einstein Particles: Isotropic Solutions and Long-Time Behavior , 2000 .

[6]  ON THE WEAK-COUPLING LIMIT FOR BOSONS AND FERMIONS , 2005, math/0503319.

[7]  M. Pulvirenti,et al.  A Kac Model for Fermions , 2013, 1307.7907.

[8]  K. Morawetz Quantum Kinetic Equations , 2018 .

[9]  S. Mischler,et al.  Entropy maximisation problem for quantum relativistic particles , 2005 .

[10]  Yan Guo,et al.  On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation , 2014, 1412.1775.

[11]  Xuguang Lu Long time strong convergence to Bose-Einstein distribution for low temperature , 2018 .

[12]  Xuguang Lu On Spatially Homogeneous Solutions of a Modified Boltzmann Equation for Fermi–Dirac Particles , 2001 .

[13]  Changjiang Zhu,et al.  Global existence to Boltzmann equation with external force in infinite vacuum , 2005 .

[14]  Yan Guo The Vlasov–Poisson–Boltzmann System Near Vacuum , 2001 .

[15]  M. Pulvirenti,et al.  On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Weak Convergence , 2020, Communications in Mathematical Physics.

[16]  Yan Guo,et al.  The Vlasov-Maxwell-Boltzmann system near Maxwellians , 2003 .

[17]  Robert M. Strain,et al.  Optimal Time Decay of the Vlasov-Poisson-Boltzmann System in ℝ3 , 2011 .

[18]  M. Pulvirenti,et al.  A short review on the derivation of the nonlinear quantum Boltzmann equations , 2007 .

[19]  R. Illner,et al.  The Boltzmann equation: Global existence for a rare gas in an infinite vacuum , 1984 .

[20]  Yan Guo,et al.  The Landau Equation in a Periodic Box , 2002 .

[21]  Xuguang Lu On Isotropic Distributional Solutions to the Boltzmann Equation for Bose-Einstein Particles , 2004 .

[22]  Robert M. Strain,et al.  Stability of the Relativistic Maxwellian in a Collisional Plasma , 2004 .

[23]  Yan Guo,et al.  The Vlasov‐Poisson‐Boltzmann system near Maxwellians , 2002 .

[24]  CHIN-YUAN LIN,et al.  ftp ejde.math.txstate.edu (login: ftp) NONLINEAR EVOLUTION EQUATIONS , 2022 .

[25]  L. Silvestre A New Regularization Mechanism for the Boltzmann Equation Without Cut-Off , 2014, 1412.4706.

[26]  Xuguang Lu The Boltzmann Equation for Bose–Einstein Particles: Velocity Concentration and Convergence to Equilibrium , 2005 .

[27]  Leif Arkeryd,et al.  Bose Condensates in Interaction with Excitations: A Kinetic Model , 2012, Communications in Mathematical Physics.

[28]  Xiangdong Zhang,et al.  On the Boltzmann Equation for 2D Bose-Einstein Particles , 2011 .

[29]  S. Mischler,et al.  On the Fundamental Solution of a Linearized Uehling–Uhlenbeck Equation , 2007 .

[30]  A. Nouri,et al.  On the Cauchy problem with large data for a space-dependent Boltzmann-Nordheim boson equation , 2016, 1601.06927.

[31]  M. Lemou Linearized quantum and relativistic Fokker–Planck–Landau equations , 2000 .

[32]  Xuguang Lu The Boltzmann Equation for Bose-Einstein Particles: Condensation in Finite Time , 2013 .

[33]  Xuguang Lu On the Boltzmann equation for Fermi-Dirac particles with very soft potentials: Global existence of weak solutions , 2008 .

[34]  Yan Guo The Vlasov-Poisson-Landau system in a periodic box , 2012 .

[35]  N. Maslova Nonlinear Evolution Equations: Kinetic Approach , 1993 .

[36]  Xuguang Lu,et al.  Global existence of solutions of the Boltzmann equation for Bose–Einstein particles with anisotropic initial data , 2017, Journal of Functional Analysis.

[37]  M. Briant Instantaneous Filling of the Vacuum for the Full Boltzmann Equation in Convex Domains , 2013, 1302.1755.

[38]  J. Velázquez,et al.  Finite time blow-up and condensation for the bosonic Nordheim equation , 2012, 1206.5410.

[39]  A. Nouri,et al.  Bose Condensates in Interaction with Excitations: A Two-Component Space-Dependent Model Close to Equilibrium , 2013, 1307.3012.

[40]  Toan T. Nguyen,et al.  Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons , 2016, Archive for Rational Mechanics and Analysis.

[41]  Radjesvarane Alexandre,et al.  Entropy Dissipation and Long-Range Interactions , 2000 .

[42]  On the Quantum Boltzmann Equation , 2003, math-ph/0302034.

[43]  Xuguang Lu,et al.  The Spatially Homogeneous Boltzmann Equation for Bose–Einstein Particles: Rate of Strong Convergence to Equilibrium , 2018, Journal of Statistical Physics.

[44]  E. A. Uehling,et al.  Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. I , 1933 .

[45]  Yan Guo,et al.  Decay and Continuity of the Boltzmann Equation in Bounded Domains , 2008, 0801.1121.

[46]  Yan Guo,et al.  The Boltzmann equation in the whole space , 2004 .

[47]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[48]  Robert M. Strain,et al.  Optimal large‐time behavior of the Vlasov‐Maxwell‐Boltzmann system in the whole space , 2010, 1006.3605.

[49]  Philip T. Gressman,et al.  Global classical solutions of the Boltzmann equation without angular cut-off , 2009, 0912.0888.

[50]  J. Velázquez,et al.  A derivation of a new set of equations at the onset of the Bose–Einstein condensation , 2008 .

[51]  M. Pulvirenti,et al.  Some Considerations on the Derivation of the Nonlinear Quantum Boltzmann Equation II: The Low Density Regime , 2006 .

[52]  Yan Guo Classical Solutions to the Boltzmann Equation for Molecules with an Angular Cutoff , 2003 .

[53]  Xuguang Lu,et al.  On Stability and Strong Convergence for the Spatially Homogeneous Boltzmann Equation for Fermi-Dirac Particles , 2003 .

[54]  M. Briant,et al.  On the Cauchy Problem for the Homogeneous Boltzmann–Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments , 2013, 1310.7220.

[55]  S. Mischler,et al.  Singular solutions for the Uehling–Uhlenbeck equation , 2008, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[56]  Xuguang Lu On the Boltzmann Equation for Fermi–Dirac Particles with Very Soft Potentials: Averaging Compactness of Weak Solutions , 2006 .

[57]  Yan Guo,et al.  Stability in the Stefan Problem with Surface Tension (I) , 2008, 0905.3600.

[58]  M. Pulvirenti The weak-coupling limit of large classical and quantum systems , 2006 .

[59]  Seok-Bae Yun,et al.  The Relativistic Quantum Boltzmann Equation Near Equilibrium , 2020, Archive for Rational Mechanics and Analysis.

[60]  Some Considerations on the Derivation of the Nonlinear Quantum Boltzmann Equation , 2003, math-ph/0301025.

[61]  Xuguang Lu The Boltzmann Equation for Bose–Einstein Particles: Regularity and Condensation , 2014 .

[62]  Yan Guo,et al.  Almost Exponential Decay Near Maxwellian , 2006 .

[63]  J. Velázquez,et al.  Blow-up rate estimates for the solutions of the bosonic Boltzmann-Nordheim equation , 2014 .

[64]  J. Dolbeault Kinetic models and quantum effects: A modified Boltzmann equation for Fermi-Dirac particles , 1994 .

[65]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[66]  C. Mouhot,et al.  Quantitative Lower Bounds for the Full Boltzmann Equation, Part I: Periodic Boundary Conditions , 2005, math/0607541.