Katalytische Flüssigphasenumwandlung oxygenierter Kohlenwasserstoffe aus Biomasse zu Treibstoffen und Rohstoffen für die Chemiewirtschaft

Fur die moderne Industriegesellschaft hat Biomasse ein enormes Potenzial als nachhaltiger Energietrager und Quelle organischen Kohlenstoffs. Ziel dieses Aufsatzes ist es, eine Ubersicht uber katalytische Reaktionen in der flussigen Phase zu geben, in denen Sauerstoff-haltige Rohstoffe aus Biomasse (vor allem Zucker und Zuckeralkohole) in wertvollere Chemikalien und Treibstoffe umgewandelt werden, wobei ein besonderer Schwerpunkt auf solchen katalytischen Transformationen liegt, die aus einem Verstandnis der fundamentalen Reaktionsmechanismen abgeleitet wurden. Die Schlusselreaktionen bei der chemischen Umwandlung von Biomasse sind Hydrolyse, Dehydratisierung, Isomerisierung, Aldolkondensation, Reformierung, Hydrierung und Oxidation. Ferner wird diskutiert, wie aus grundlegenden chemischen und katalytischen Konzepten Strategien fur die Steuerung von Reaktionsverlaufen und Prozessbedingungen erarbeitet werden konnen. Als Beispiele dienen dabei die Herstellung von H2/CO2- oder H2/CO-Gasmischungen durch Reformierung in der wassrigen Phase, die Produktion von Furanen durch selektive Dehydratisierung von Kohlenhydraten und die Erzeugung flussiger Alkane durch Kombination der Aldolkondensation mit Dehydratisierungs- und Hydrierungsprozessen.

[1]  Jürgen O. Metzger Produktion von flüssigen Kohlenwasserstoffen aus Biomasse , 2006 .

[2]  B. Shanks,et al.  Kinetic Analysis of the Hydrogenolysis of Lower Polyhydric Alcohols: Glycerol to Glycols , 2003 .

[3]  H. Vogel,et al.  Dehydration of d-fructose to hydroxymethylfurfural in sub- and supercritical fluids , 2005 .

[4]  Tomohisa Miyazawa,et al.  Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism , 2006 .

[5]  Johnathan E. Holladay,et al.  Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas , 2004 .

[6]  C. Moreau,et al.  Hydrolysis of Fructose and Glucose Precursors in the Presence of H-form Zeolites 1 , 1997 .

[7]  James A. Dumesic,et al.  An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates , 2007 .

[8]  Johnathan E. Holladay,et al.  Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural , 2007, Science.

[9]  David W. Brown,et al.  Dehydration reactions of fructose in non‐aqueous media , 2007 .

[10]  A. Perlin,et al.  Intramolecular hydrogen-bonding and solvation contributions to the relative stability of the β-furanose form of D-fructose in dimethyl sulfoxide , 1987 .

[11]  M. Hawley,et al.  Mechanism Study of Sugar and Sugar Alcohol Hydrogenolysis Using 1,3-Diol Model Compounds , 1995 .

[12]  J. Dumesic,et al.  Conversion of biomass to 1,2-propanediol by selective catalytic hydrogenation of lactic acid over silica-supported copper , 2002 .

[13]  Mark F. Davis,et al.  Ab initio molecular dynamics simulations of β-d-glucose and β-d-xylose degradation mechanisms in acidic aqueous solution , 2005 .

[14]  J. Dumesic,et al.  Renewable hydrogen by aqueous-phase reforming of glucose. , 2004, Chemical communications.

[15]  Heiji Enomoto,et al.  Conversion Mechanism of Cellulosic Biomass to Lactic Acid in Subcritical Water and Acid–base Catalytic Effect of Subcritical Water , 2004 .

[16]  G. Huber,et al.  Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. , 2004, Angewandte Chemie.

[17]  G. N. Richards,et al.  Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose. , 1990, Carbohydrate research.

[18]  Yoshihisa Inoue,et al.  Catalytic Activity of Lanthanide(III) Ions for the Dehydration of Hexose to 5-Hydroxymethyl-2-furaldehyde in Water , 2001 .

[19]  Julien Chaminand,et al.  Glycerol hydrogenolysis on heterogeneous catalysts , 2004 .

[20]  A. Gaset,et al.  High selective production of tetrahydrofurfuryl alcohol: Catalytic hydrogenation of furfural and furfuryl alcohol , 2007 .

[21]  Michael Jerry Antal,et al.  Mechanism of formation of 2-furaldehyde from d-xylose , 1991 .

[22]  N. Karayannis,et al.  Commercial polypropylene catalysts , 1992 .

[23]  Galen J. Suppes,et al.  Low-pressure hydrogenolysis of glycerol to propylene glycol , 2005 .

[24]  Dennis J. Miller,et al.  Kinetics of Aqueous-Phase Hydrogenation of Lactic Acid to Propylene Glycol , 2002 .

[25]  Alessandro Gandini,et al.  Furans in polymer chemistry , 1997 .

[26]  G. Huber,et al.  Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons , 2003, Science.

[27]  Yuriy Román‐Leshkov,et al.  Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates , 2007, Nature.

[28]  Hexing Li,et al.  Furfural Hydrogenation to Furfuryl Alcohol over a Novel Ni–Co–B Amorphous Alloy Catalyst , 2001 .

[29]  F. Porta,et al.  Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals , 2005 .

[30]  Amy H. Roy,et al.  Catalytic Alkane Metathesis by Tandem Alkane Dehydrogenation-Olefin Metathesis , 2006, Science.

[31]  L. Rigal,et al.  Synthesis of 5‐hydroxymethyl‐2‐furancarboxaldehyde catalysed by cationic exchange resins. Part 1. Choice of the catalyst and the characteristics of the reaction medium , 2007 .

[32]  E. Tronconi,et al.  A mathematical model for the catalytic hydrogenolysis of carbohydrates , 1992 .

[33]  H. Adkins,et al.  Hydrogenolysis of Sugars , 1933 .

[34]  Bryce J. Stokes,et al.  Biomass as Feedstock for A Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply , 2005 .

[35]  Frieder W. Lichtenthaler,et al.  Carbohydrates as green raw materials for the chemical industry , 2004 .

[36]  Carlo Carlini,et al.  Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate , 2005 .

[37]  R. Gorte,et al.  Studies of the water-gas-shift reaction with ceria-supported precious metals , 2005 .

[38]  James A. Dumesic,et al.  Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides , 2007 .

[39]  J. Metzger,et al.  Production of liquid hydrocarbons from biomass. , 2006, Angewandte Chemie.

[40]  James A. Dumesic,et al.  Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water , 2006 .

[41]  Christopher W. Jones,et al.  Batch Aqueous-Phase Reforming of Woody Biomass , 2006 .

[42]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[43]  Martyn Pillinger,et al.  Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts , 2005 .

[44]  J. Dumesic,et al.  Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. , 2006, Angewandte Chemie.

[45]  G. Huber,et al.  Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates , 2005, Science.

[46]  Toshitaka Funazukuri,et al.  Glucose production by hydrolysis of starch under hydrothermal conditions , 2004 .

[47]  Alain Perrard,et al.  Glucose Hydrogenation on Ruthenium Catalysts in a Trickle-Bed Reactor , 1998 .

[48]  Andrei V. Ruban,et al.  Anode materials for low-temperature fuel cells : A density functional theory study , 2001 .

[49]  H. Vogel,et al.  Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production , 2006 .

[50]  Gerard Avignon,et al.  Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites , 1996 .

[51]  M. B. Saleh,et al.  Alumina modified by dimethyl sulfoxide as a new selective solid phase extractor for separation and preconcentration of inorganic mercury(II). , 2006, Talanta.

[52]  K. Zeitsch,et al.  The Chemistry and Technology of Furfural and Its Many By-Products , 2000 .

[53]  James A. Dumesic,et al.  An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery , 2006 .

[54]  G. N. Richards,et al.  Four-carbon model compounds for the reactions of sugars in water at high temperature , 1990 .

[55]  L. Rigal,et al.  Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalysed by cationic exchange resins. Part 1. Choice of the catalyst and the characteristics of the reaction medium: Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde , 1981 .

[56]  Alessandro Gandini,et al.  Recent Catalytic Advances in the Chemistry of Substituted Furans from Carbohydrates and in the Ensuing Polymers , 2004 .

[57]  A. Basińska,et al.  The effect of support on WGSR activity of ruthenium catalysts , 1999 .

[58]  G. Palmisano,et al.  One-pot electrocatalytic oxidation of glycerol to DHA , 2006 .

[59]  James A. Dumesic,et al.  A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts , 2005 .

[60]  Brent H. Shanks,et al.  Effect of sulfur and temperature on ruthenium-catalyzed glycerol hydrogenolysis to glycols , 2005 .

[61]  Nivedita T. Dwivedi,et al.  Effect of Catalyst Constituents on (Ni, Mo, and Cu)/Kieselguhr-Catalyzed Sucrose Hydrogenolysis , 2005 .

[62]  H. V. Bekkum,et al.  The Conversion of Fructose and Glucose in Acidic Media: Formation of Hydroxymethylfurfural , 1986 .

[63]  H. Szmant,et al.  The preparation of 5-hydroxymethylfurfuraldehyde from high fructose corn syrup and other carbohydrates: Preparation of 5-hydroxymethylfurfuraldehyde , 1981 .

[64]  K. Tsuda,et al.  Polymeric analogues of dipolar aprotic solvents as phase transfer catalysts , 1988 .

[65]  G. Huber,et al.  Aqueous-Phase Reforming of Ethylene Glycol Over Supported Platinum Catalysts , 2003 .

[66]  B. Kuster,et al.  5‐Hydroxymethylfurfural (HMF). A Review Focussing on its Manufacture , 1990 .

[67]  J. Dumesic,et al.  Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water , 2002, Nature.

[68]  F. Franks Physical chemistry of small carbohydrates - equilibrium solution properties , 1987 .

[69]  C. Moreau,et al.  Kinetic study of the isomerization of glucose into fructose in the presence of anion-modified hydrotalcites , 2002 .

[70]  V. Grushin,et al.  One-pot, two-step, practical catalytic synthesis of 2,5-diformylfuran from fructose. , 2003, Organic letters.

[71]  Yuriy Román-Leshkov,et al.  Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose , 2006, Science.