Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells

[1]  Bob Löwenberg,et al.  Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. , 2005, Blood.

[2]  F. Rosenbauer,et al.  Effect of transcription-factor concentrations on leukemic stem cells. , 2005, Blood.

[3]  G. P. Studzinski,et al.  Cooperation between antioxidants and 1,25‐dihydroxyvitamin D3 in induction of leukemia HL60 cell differentiation through the JNK/AP‐1/Egr‐1 pathway , 2005, Journal of cellular physiology.

[4]  J. Dick,et al.  Cancer stem cells: lessons from leukemia. , 2005, Trends in cell biology.

[5]  S. Morrison,et al.  Supplemental Experimental Procedures , 2022 .

[6]  Martin A. Nowak,et al.  Dynamics of chronic myeloid leukaemia , 2005, Nature.

[7]  Pu Zhang,et al.  Potential Autoregulation of Transcription Factor PU.1 by an Upstream Regulatory Element , 2005, Molecular and Cellular Biology.

[8]  Tannishtha Reya,et al.  Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance , 2005, Nature Immunology.

[9]  M. Meyerson,et al.  EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. , 2005, The New England journal of medicine.

[10]  A. Iwama,et al.  Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. , 2004, Immunity.

[11]  K. Akashi,et al.  MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. , 2004, Cancer cell.

[12]  I. Weissman,et al.  JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells , 2004, Cell.

[13]  Joanna H Shih,et al.  Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways , 2004, Oncogene.

[14]  Laurie E Ailles,et al.  Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. , 2004, The New England journal of medicine.

[15]  H. Haas,et al.  Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators. , 2004, Blood.

[16]  J. Dick,et al.  Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity , 2004, Nature Immunology.

[17]  J. Kutok,et al.  Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1 , 2004, Nature Genetics.

[18]  R. Verhaak,et al.  Prognostically useful gene-expression profiles in acute myeloid leukemia. , 2004, The New England journal of medicine.

[19]  R. Tibshirani,et al.  Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. , 2004, The New England journal of medicine.

[20]  Irving L. Weissman,et al.  Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Cowland,et al.  The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. , 2003, Blood.

[22]  I. Weissman,et al.  A role for Wnt signalling in self-renewal of haematopoietic stem cells , 2003, Nature.

[23]  Daniel G. Tenen,et al.  Disruption of differentiation in human cancer: AML shows the way , 2003, Nature Reviews Cancer.

[24]  R. Takahashi,et al.  Calpain-mediated X-linked Inhibitor of Apoptosis Degradation in Neutrophil Apoptosis and Its Impairment in Chronic Neutrophilic Leukemia* , 2002, The Journal of Biological Chemistry.

[25]  John T. Dimos,et al.  A Stem Cell Molecular Signature , 2002, Science.

[26]  D. Melton,et al.  "Stemness": Transcriptional Profiling of Embryonic and Adult Stem Cells , 2002, Science.

[27]  Irving L. Weissman,et al.  Prospective isolation of human clonogenic common myeloid progenitors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Gilliland,et al.  Focus on acute leukemias. , 2002, Cancer cell.

[29]  G. Sauvageau,et al.  HOXB4-Induced Expansion of Adult Hematopoietic Stem Cells Ex Vivo , 2002, Cell.

[30]  W. Wurst,et al.  Permutation-validated principal components analysis of microarray data , 2002, Genome Biology.

[31]  H. Bojar,et al.  Gene expression profiling identifies significant differences between the molecular phenotypes of bone marrow-derived and circulating human CD34+ hematopoietic stem cells. , 2002, Blood.

[32]  J. Downing,et al.  Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. , 2002, Cancer cell.

[33]  K. Akashi,et al.  Regulation of the PU.1 gene by distal elements. , 2001, Blood.

[34]  I. Weissman,et al.  Stem cells, cancer, and cancer stem cells , 2001, Nature.

[35]  Cheng Li,et al.  Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application , 2001, Genome Biology.

[36]  D. Baker,et al.  Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation , 2001, Nature Immunology.

[37]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  I. Weissman,et al.  A clonogenic common myeloid progenitor that gives rise to all myeloid lineages , 2000, Nature.

[39]  J. Walsh,et al.  PU.1 regulates both cytokine‐dependent proliferation and differentiation of granulocyte/macrophage progenitors , 1998, The EMBO journal.

[40]  B. Calabretta,et al.  Granulocytic differentiation of normal hematopoietic precursor cells induced by transcription factor PU.1 correlates with negative regulation of the c-myb promoter. , 1997, Blood.

[41]  J. Licht,et al.  Transcription factors, normal myeloid development, and leukemia. , 1997, Blood.

[42]  D. Phinney,et al.  Chromosomal integration dependent induction of junB by growth factors requires multiple flanking evolutionarily conserved sequences. , 1996, Oncogene.

[43]  A. Feeney,et al.  Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. , 1996, The EMBO journal.

[44]  Antonio Celada,et al.  Repression of I-Aβ Gene Expression by the Transcription Factor PU.1 (*) , 1995, The Journal of Biological Chemistry.

[45]  J. Gray,et al.  Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Achim Leutz,et al.  Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1 , 2006, Nature Genetics.

[47]  D. Tenen,et al.  The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. , 2003, Blood.

[48]  M. Minden,et al.  Heterozygous PU.1 mutations are associated with acute myeloid leukemia. , 2002, Blood.

[49]  C L Carpenter,et al.  c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. , 1999, The Journal of biological chemistry.

[50]  J. Aster,et al.  Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. , 1998, Blood.

[51]  R. Maki,et al.  Repression of I-A beta gene expression by the transcription factor PU.1. , 1995, The Journal of biological chemistry.