Resolving the Adhesive Behavior of 1D Materials: A Review of Experimental Approaches

[1]  S. K. Panda,et al.  Fracture energy of CNT/epoxy nanocomposites with progressive interphase debonding, cavitation, and plastic deformation of nanovoids , 2022, Fatigue & Fracture of Engineering Materials & Structures.

[2]  James L Mead,et al.  Advances in assembled micro- and nanoscale mechanical contact probes , 2022, Frontiers in Mechanical Engineering.

[3]  Huanhuan Bai,et al.  High-density grafting of carbon nanotube/carbon nanofiber hybrid on carbon fiber surface by vacuum filtration for effective interfacial reinforcement of its epoxy composites , 2022, Composites Science and Technology.

[4]  Han Huang,et al.  The Shearing Behavior of Nanowire Contact Pairs in Air and the Role of Humidity , 2022, physica status solidi (RRL) – Rapid Research Letters.

[5]  S. Fatikow,et al.  Frictional shear stress of ZnO nanowires on natural and pyrolytic graphite substrates , 2022, Friction.

[6]  Junfeng Cui,et al.  Quantitatively investigating the self-attraction of nanowires , 2021, Nano Research.

[7]  Sumit Sharma,et al.  Interfacial shear strength of carbon nanotube reinforced polymer composites: A review , 2021, Materials Today: Proceedings.

[8]  V. Varshney,et al.  A study on mechanical strength and stability of partially-fused carbon nanotube junctions , 2021 .

[9]  R. A. Ilyas,et al.  Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview , 2021, Polymers.

[10]  James L Mead,et al.  Catalyst-free synthesis and mechanical characterization of TaC nanowires , 2021 .

[11]  V. Srinivasan,et al.  A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications , 2021, International Nano Letters.

[12]  J. Prikulis,et al.  Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches , 2021, Nanomaterials.

[13]  Yujin Hu,et al.  The Adhesion of Mica Nanolayers on a Silicon Substrate in Air , 2020, Advanced Materials Interfaces.

[14]  Yang Zhao,et al.  Investigation of the relationship between adhesion force and mechanical behavior of vertically aligned carbon nanotube arrays , 2020, Nanotechnology.

[15]  S. Fatikow,et al.  Measurement of sub-nanonewton forces inside a scanning electron microscope. , 2020, The Review of scientific instruments.

[16]  James L Mead,et al.  Interfacial adhesion of ZnO nanowires on a Si substrate in air. , 2020, Nanoscale.

[17]  M. Calleja,et al.  Optical Transduction for Vertical Nanowire Resonators , 2020, Nano letters.

[18]  J. Vilatela,et al.  A perspective on high-performance CNT fibres for structural composites , 2019, Carbon.

[19]  B. E. Alaca,et al.  A Review on Size‐Dependent Mechanical Properties of Nanowires , 2019, Advanced Engineering Materials.

[20]  Junjie Chen,et al.  Recent Advances in Characterization Techniques for the Interface in Carbon Nanotube-Reinforced Polymer Nanocomposites , 2019, Advances in Materials Science and Engineering.

[21]  B. Wardle,et al.  Morphology control of aligned carbon nanotube pins formed via patterned capillary densification , 2019, Nano Futures.

[22]  T. Rabczuk,et al.  Size- and edge-effect cohesive energy and shear strength between graphene, carbon nanotubes and nanofibers: Continuum modeling and molecular dynamics simulations , 2019, Composite Structures.

[23]  Han Huang,et al.  The kinetic frictional shear stress of ZnO nanowires on graphite and mica substrates , 2019, Applied Surface Science.

[24]  H. B. Chew,et al.  Direct nanomechanical measurements of boron nitride nanotube—ceramic interfaces , 2018, Nanotechnology.

[25]  A. R. Ullah,et al.  Achieving short high-quality gate-all-around structures for horizontal nanowire field-effect transistors , 2018, Nanotechnology.

[26]  Junhua Zhao,et al.  Buckling behaviors of metal nanowires encapsulating carbon nanotubes by considering surface/interface effects from a refined beam model , 2019, Carbon.

[27]  Han Huang,et al.  Environment‐Dependent Adhesion Energy of Mica Nanolayers Determined by a Nanomanipulation‐Based Bridging Method , 2018, Advanced Materials Interfaces.

[28]  Junjie Chen,et al.  Interfacial characteristics of carbon nanotube-polymer composites: A review , 2018, Composites Part A: Applied Science and Manufacturing.

[29]  E. Meyer,et al.  Structural superlubricity and ultralow friction across the length scales , 2018, Nature.

[30]  Jacob R. Gissinger,et al.  Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance , 2018, Composites Science and Technology.

[31]  Yu Tian,et al.  Clumping Stability of Vertical Nanofibers on Surfaces. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[32]  Cheol-Sang Kim,et al.  Boron nitride nanotubes: synthesis and applications , 2018, Nano Convergence.

[33]  A. Micolich,et al.  Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors. , 2018, Nano letters.

[34]  Christopher M. Dmuchowski,et al.  Direct nanomechanical characterization of carbon nanotubes - titanium interfaces , 2018, Carbon.

[35]  Yitian Peng,et al.  Tuning the nanotribological behaviors of single silver nanowire through various manipulations , 2018 .

[36]  James L Mead,et al.  Characterizing the surface forces between two individual nanowires using optical microscopy based nanomanipulation , 2018, Nanotechnology.

[37]  J. Mead,et al.  Enhanced adhesion of ZnO nanowires during in situ scanning electron microscope peeling. , 2018, Nanoscale.

[38]  Robert Sinclair,et al.  Deformable Organic Nanowire Field‐Effect Transistors , 2018, Advanced materials.

[39]  Han Huang,et al.  Effects of Surface Roughness on the Kinetic Friction of SiC Nanowires on SiN Substrates , 2018, Tribology Letters.

[40]  Christopher M. Dmuchowski,et al.  Direct measurements of the mechanical strength of carbon nanotube - Aluminum interfaces , 2017 .

[41]  Junhua Zhao,et al.  A theoretical analysis of peeling behavior between nanowires and substrates in the ambient condition with high relative humidity , 2017 .

[42]  Ashlie Martini,et al.  Measuring and Understanding Contact Area at the Nanoscale: A Review , 2017 .

[43]  M. Pharr,et al.  Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries , 2017 .

[44]  F. Fisher,et al.  A controllable way to measure the interfacial strength between carbon nanotube and polymer using a nanobridge structure , 2017 .

[45]  Han Huang,et al.  The effect of surface texture on the kinetic friction of a nanowire on a substrate , 2017, Scientific Reports.

[46]  J. Tour,et al.  In situ mechanical investigation of carbon nanotube-graphene junction in three-dimensional carbon nanostructures. , 2017, Nanoscale.

[47]  Ray R. LaPierre,et al.  A review of III–V nanowire infrared photodetectors and sensors , 2017 .

[48]  M. Borgström,et al.  Towards high efficiency nanowire solar cells , 2017 .

[49]  Junhua Zhao,et al.  The peeling behavior of nanowires and carbon nanotubes from a substrate using continuum modeling , 2017 .

[50]  Toshio Fukuda,et al.  A Vision-Based Automated Manipulation System for the Pick-Up of Carbon Nanotubes , 2017, IEEE/ASME Transactions on Mechatronics.

[51]  Shiliang Wang,et al.  The Mechanical Properties of Nanowires , 2017, Advanced science.

[52]  Y. Mai,et al.  In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates , 2016 .

[53]  F. Du,et al.  Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range , 2016, Nature Communications.

[54]  Xiaodong He,et al.  A study of mechanical peeling behavior in a junction assembled by two individual carbon nanotubes , 2016 .

[55]  Hannah J. Joyce,et al.  A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .

[56]  Weiwei Zhou,et al.  In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites , 2016 .

[57]  K. Sabelfeld,et al.  Nucleation, Growth, and Bundling of GaN Nanowires in Molecular Beam Epitaxy: Disentangling the Origin of Nanowire Coalescence. , 2016, Nano letters.

[58]  L. Tong,et al.  Solutions for Clamped Adhesively Bonded Single Lap Joint With Movement of Support End and Its Application to a Carbon Nanotube Junction in Tension , 2016 .

[59]  N. Pugno,et al.  Deformation of nanotubes in peeling contact with flat substrate: An in situ electron microscopy nanomechanical study , 2016 .

[60]  Ayesha Kausar,et al.  Review of Applications of Polymer/Carbon Nanotubes and Epoxy/CNT Composites , 2016 .

[61]  Shutao Wang,et al.  Understanding Surface Adhesion in Nature: A Peeling Model , 2016, Advanced science.

[62]  Yi Cui,et al.  Interwall Friction and Sliding Behavior of Centimeters Long Double-Walled Carbon Nanotubes. , 2016, Nano letters.

[63]  Han Huang,et al.  Characterising the nanoscale kinetic friction using force-equilibrium and energy-conservation models with optical manipulation , 2016, Nanotechnology.

[64]  C. Soci,et al.  Nanowire Lasers , 2018, 1809.01328.

[65]  Xianqiao Wang,et al.  Mechanical strength of boron nitride nanotube-polymer interfaces , 2015 .

[66]  Georg E. Fantner,et al.  Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging , 2015, Scientific Reports.

[67]  Youngoh Lee,et al.  Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices. , 2015, Nano letters.

[68]  S. Gorb,et al.  Tribological properties of vertically aligned carbon nanotube arrays , 2015 .

[69]  Han Huang,et al.  The kinetic friction between a nanowire and a flat substrate measured using nanomanipulation with optical microscopy , 2015 .

[70]  T. Rabczuk,et al.  Binding energy and mechanical stability of two parallel and crossing carbon nanotubes , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  C. Bittencourt,et al.  Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials , 2015, Beilstein journal of nanotechnology.

[72]  Maolin Bo,et al.  Coordination-resolved electron spectrometrics. , 2015, Chemical reviews.

[73]  Han Huang,et al.  Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method , 2015 .

[74]  Han Huang,et al.  A simple criterion for determining the static friction force between nanowires and flat substrates using the most-bent-state method , 2015, Nanotechnology.

[75]  Xiaodong He,et al.  Tensile failure mechanisms of individual junctions assembled by two carbon nanotubes , 2015 .

[76]  Yu Tian,et al.  Clumping Criteria of Vertical Nanofibers on Surfaces , 2015 .

[77]  D. Haldane,et al.  Strain‐Induced Alignment Mechanisms of Carbon Nanotube Networks , 2015 .

[78]  J. Robertson,et al.  Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics. , 2015, ACS applied materials & interfaces.

[79]  Xianqiao Wang,et al.  Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy , 2015 .

[80]  Jing Xu,et al.  Flexible electronics based on inorganic nanowires. , 2015, Chemical Society reviews.

[81]  S. Vlassov,et al.  Tribological Aspects of In Situ Manipulation of Nanostructures Inside Scanning Electron Microscope , 2015 .

[82]  Thomas Mikolajick,et al.  Reconfigurable nanowire electronics – A review , 2014 .

[83]  Neha Arora,et al.  Arc discharge synthesis of carbon nanotubes: Comprehensive review , 2014 .

[84]  Wanlin Guo,et al.  Friction of low-dimensional nanomaterial systems , 2014 .

[85]  V. Grillo,et al.  Bundling of GaAs nanowires: a case of adhesion-induced self-assembly of nanowires. , 2014, ACS nano.

[86]  Tianjun Li,et al.  Adhesion energy of single wall carbon nanotube loops on various substrates , 2014, 1409.0959.

[87]  N. Rahbar,et al.  Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface , 2014 .

[88]  T. Rabczuk,et al.  Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines. , 2014, The Journal of chemical physics.

[89]  S. Stupkiewicz,et al.  Mechanical deformations of boron nitride nanotubes in crossed junctions , 2014 .

[90]  J. Robertson,et al.  Bio‐Inspired Hierarchical Polymer Fiber–Carbon Nanotube Adhesives , 2014, Advanced materials.

[91]  Yaodong Liu,et al.  Polymer/carbon nanotube nano composite fibers--a review. , 2014, ACS applied materials & interfaces.

[92]  Y. Ju,et al.  Mimicking a gecko’s foot with strong adhesive strength based on a spinnable vertically aligned carbon nanotube array , 2014 .

[93]  A. Beese,et al.  In situ scanning electron microscope peeling to quantify surface energy between multiwalled carbon nanotubes and graphene. , 2014, ACS nano.

[94]  Yang Li,et al.  Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite , 2014 .

[95]  Javier Tamayo,et al.  Silicon nanowires: where mechanics and optics meet at the nanoscale , 2013, Scientific Reports.

[96]  Moria Kwiat,et al.  Large-scale ordered 1D-nanomaterials arrays: Assembly or not? , 2013 .

[97]  M. Urbakh Friction: Towards macroscale superlubricity. , 2013, Nature nanotechnology.

[98]  Qing Chen,et al.  Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. , 2013, Nature nanotechnology.

[99]  Ulises Galan,et al.  Intermolecular interactions dictating adhesion between ZnO and graphite , 2013 .

[100]  F. Hong,et al.  Effects of surface morphology, size effect and wettability on interfacial adhesion of carbon nanotube arrays , 2013 .

[101]  C. Ke,et al.  Direct measurements of the mechanical strength of carbon nanotube-poly(methyl methacrylate) interfaces. , 2013, Small.

[102]  Dae-Eun Kim,et al.  Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. , 2013, Nanoscale.

[103]  T. Rabczuk,et al.  A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates , 2013 .

[104]  Zhong Lin Wang,et al.  Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging , 2013, Science.

[105]  Xiangfeng Duan,et al.  Nanoscale devices: untangling nanowire assembly. , 2013, Nature nanotechnology.

[106]  H. Espinosa,et al.  Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking , 2013 .

[107]  Hao Yan,et al.  A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. , 2013, Nature nanotechnology.

[108]  Yong Zhang,et al.  Automated Pick-Place of Silicon Nanowires , 2013, IEEE Transactions on Automation Science and Engineering.

[109]  S. Vlassov,et al.  Real‐time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: Experimental methods and modeling , 2013 .

[110]  Zhenhai Xia,et al.  Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes. , 2013, Nanoscale.

[111]  Zengsheng Ma,et al.  XPS quantification of the hetero-junction interface energy , 2013 .

[112]  Ming Zhou,et al.  Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface , 2012 .

[113]  John Robertson,et al.  Adhesive Properties of Gecko-Inspired Mimetic via Micropatterned Carbon Nanotube Forests , 2012 .

[114]  Majid Minary-Jolandan,et al.  A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires , 2012, Advanced materials.

[115]  S. Vlassov,et al.  The effect of substrate roughness on the static friction of CuO nanowires , 2012 .

[116]  T. Chou,et al.  Carbon nanotube fibers for advanced composites , 2012 .

[117]  J. Song,et al.  Air‐Bridged Ohmic Contact on Vertically Aligned Si Nanowire Arrays: Application to Molecule Sensors , 2012, Advanced materials.

[118]  Owen Y Loh,et al.  Nanoelectromechanical contact switches. , 2012, Nature nanotechnology.

[119]  Zhenhai Xia,et al.  Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications. , 2012, ACS applied materials & interfaces.

[120]  I. Bae,et al.  Radial elasticity of multi-walled boron nitride nanotubes , 2012, Nanotechnology.

[121]  M. Naraghi,et al.  Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design. , 2012, ACS nano.

[122]  S. Vlassov,et al.  Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface , 2012 .

[123]  A. Romanov,et al.  In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope , 2012 .

[124]  Pei-Hsing Huang Molecular dynamics for lateral surface adhesion and peeling behavior of single-walled carbon nanotubes on gold surfaces , 2011 .

[125]  René Kizek,et al.  Methods for carbon nanotubes synthesis—review , 2011 .

[126]  T. Takagi,et al.  Nanotube fracture during the failure of carbon nanotube/alumina composites , 2011 .

[127]  S. Vlassov,et al.  Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope , 2011 .

[128]  Qingquan Qin,et al.  Static friction between silicon nanowires and elastomeric substrates. , 2011, ACS nano.

[129]  N. Takeda,et al.  Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method , 2011 .

[130]  Yong Zhang,et al.  Automated Four-Point Probe Measurement of Nanowires Inside a Scanning Electron Microscope , 2011, IEEE Transactions on Nanotechnology.

[131]  E. Buks,et al.  Effects of electron beam induced carbon deposition on the mechanical properties of a micromechanical oscillator , 2011, 1105.1049.

[132]  Muhammad M. Hussain,et al.  Contact materials for nanowire devices and nanoelectromechanical switches , 2011 .

[133]  J. Tour,et al.  Interface toughness of carbon nanotube reinforced epoxy composites. , 2011, ACS applied materials & interfaces.

[134]  Pu Zhang,et al.  Peeling off Carbon Nanotubes from Rigid Substrates: An Exact Model , 2011 .

[135]  L. Bellon,et al.  Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy , 2010, 1012.3895.

[136]  Haodan Jiang,et al.  Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling. , 2010, ACS applied materials & interfaces.

[137]  C. Ke,et al.  Elastic deformation of carbon-nanotube nanorings. , 2010, Small.

[138]  M. Roukes,et al.  Low voltage nanoelectromechanical switches based on silicon carbide nanowires. , 2010, Nano letters.

[139]  M. Borgström,et al.  Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy , 2010 .

[140]  Mukul Kumar,et al.  Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. , 2010, Journal of nanoscience and nanotechnology.

[141]  Guangwen Zhou,et al.  Adhesion-driven buckling of single-walled carbon nanotube bundles , 2010 .

[142]  Y. Gun’ko,et al.  Recent Advances in Research on Carbon Nanotube–Polymer Composites , 2010, Advanced materials.

[143]  Hui Xie,et al.  In situ peeling of one-dimensional nanostructures using a dual-probe nanotweezer. , 2010, The Review of scientific instruments.

[144]  Mark Oksman,et al.  Knocking down highly-ordered large-scale nanowire arrays. , 2010, Nano letters.

[145]  R. Miles,et al.  Mechanical peeling of free-standing single-walled carbon-nanotube bundles. , 2010, Small.

[146]  S. R. Bakshi,et al.  Carbon nanotube reinforced metal matrix composites - a review , 2010 .

[147]  T. Chou,et al.  An assessment of the science and technology of carbon nanotube-based fibers and composites , 2010 .

[148]  Shuo-Hung Chang,et al.  Surface adhesion between hexagonal boron nitride nanotubes and silicon based on lateral force microscopy , 2010 .

[149]  Zhong Lin Wang,et al.  Friction and Shear Strength at the Nanowire–Substrate Interfaces , 2009, Nanoscale research letters.

[150]  M. Ishikawa,et al.  Adhesion and peeling forces of carbon nanotubes on a substrate , 2009 .

[151]  A. Javey,et al.  Toward the Development of Printable Nanowire Electronics and Sensors , 2009 .

[152]  N. Wilson,et al.  Carbon nanotube tips for atomic force microscopy. , 2009, Nature nanotechnology.

[153]  A. Raman,et al.  Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope , 2009 .

[154]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[155]  M. Haque,et al.  Role of adhesion in shear strength of nanowire–substrate interfaces , 2009 .

[156]  D. S. Haliyo,et al.  Parallel imaging/manipulation force microscopy , 2009 .

[157]  Hans-Jürgen Butt,et al.  Normal capillary forces. , 2009, Advances in colloid and interface science.

[158]  P. Paolino,et al.  Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement , 2009, Nanotechnology.

[159]  Håkan Pettersson,et al.  Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. , 2008, Small.

[160]  Liangti Qu,et al.  Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off , 2008, Science.

[161]  Matthew R. Leyden,et al.  Identifying individual single-walled and double-walled carbon nanotubes by atomic force microscopy. , 2008, Nano letters.

[162]  M. Ishikawa,et al.  Visualization of nanoscale peeling of carbon nanotube on graphite , 2008 .

[163]  Yunqi Liu,et al.  The Intramolecular Junctions of Carbon Nanotubes , 2008 .

[164]  B. Bhushan,et al.  Adhesion and friction between individual carbon nanotubes measured using force-versus-distance curves in atomic force microscopy , 2008 .

[165]  John Robertson,et al.  Surface properties of vertically aligned carbon nanotube arrays , 2008 .

[166]  Yan-Mei Yu,et al.  Contrasting morphologies of O-rich ZnO epitaxy on Zn- and O-polar thin film surfaces: Phase-field model , 2008 .

[167]  B. Bhushan,et al.  Adhesion and friction of a multiwalled carbon nanotube sliding against single-walled carbon nanotube , 2008 .

[168]  B. Bhushan,et al.  Phase behavior of capillary bridges: towards nanoscale water phase diagram. , 2008, Physical chemistry chemical physics : PCCP.

[169]  Ji-Yong Park,et al.  Bending and bundling of metal-free vertically aligned ZnO nanowires due to electrostatic interaction , 2008, Nanotechnology.

[170]  Bharat Bhushan,et al.  Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays , 2008, Nanotechnology.

[171]  N. Sasaki,et al.  Simulation of Nanoscale Peeling and Adhesion of Single-Walled Carbon Nanotube on Graphite Surface , 2008 .

[172]  Theresa S. Mayer,et al.  Bottom-up assembly of large-area nanowire resonator arrays. , 2008, Nature nanotechnology.

[173]  A. Raman,et al.  Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. , 2008, Nano letters.

[174]  Liangti Qu,et al.  Gecko‐Foot‐Mimetic Aligned Single‐Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties , 2007 .

[175]  Victor Samper,et al.  Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template , 2007 .

[176]  Lars Montelius,et al.  Shear stress measurements on InAs nanowires by AFM manipulation. , 2007, Small.

[177]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[178]  Y. Mikata Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube , 2007 .

[179]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[180]  Joo-Hiuk Son,et al.  Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes , 2007 .

[181]  A. Desai,et al.  Sliding of zinc oxide nanowires on silicon substrate , 2007 .

[182]  Lianqiao Yang,et al.  Mechanism and thermal effect of delamination in light-emitting diode packages , 2005, Microelectron. J..

[183]  J. L. Högberg Mixed mode cohesive law , 2006 .

[184]  Marc Faucher,et al.  Self-assembled single wall carbon nanotube field effect transistors and AFM tips prepared by hot filament assisted CVD , 2006 .

[185]  Yiping Zhao,et al.  Clusters of bundled nanorods in nanocarpet effect , 2006 .

[186]  M. Meyyappan,et al.  Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive , 2006 .

[187]  Linda S. Schadler,et al.  Fracture Transitions at a Carbon‐Nanotube/Polymer Interface , 2006 .

[188]  N. Sasaki,et al.  Theoretical Simulation of Atomic-Scale Peeling of Single-Walled Carbon Nanotube from Graphite Surface , 2006 .

[189]  A. Desai,et al.  Mechanics of the interface for carbon nanotube–polymer composites , 2005 .

[190]  Chang-Soo Han,et al.  Imaging artefacts in atomic force microscopy with carbon nanotube tips , 2005 .

[191]  Ali Dhinojwala,et al.  Synthetic gecko foot-hairs from multiwalled carbon nanotubes. , 2005, Chemical communications.

[192]  Rodney S. Ruoff,et al.  Mechanics of Crystalline Boron Nanowires , 2005 .

[193]  Thomas Frisch,et al.  Peeling off an elastica from a smooth attractive substrate. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[194]  A. Bonnot,et al.  Analysis of mechanical properties of single wall carbon nanotubes fixed at a tip apex by atomic force microscopy , 2005 .

[195]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[196]  Sidney R. Cohen,et al.  Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix , 2004 .

[197]  Charles M. Lieber,et al.  Single-Walled Carbon Nanotube AFM Probes: Optimal Imaging Resolution of Nanoclusters and Biomolecules in Ambient and Fluid Environments , 2004 .

[198]  Bharat Bhushan,et al.  Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction , 2003 .

[199]  Bin Liu,et al.  Binding energy of parallel carbon nanotubes , 2003 .

[200]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[201]  Sidney R. Cohen,et al.  Detachment of nanotubes from a polymer matrix , 2002 .

[202]  C. Dekker,et al.  Scanning tunneling spectroscopy on crossed carbon nanotubes , 2002 .

[203]  Alex A. Volinsky,et al.  Interfacial toughness measurements for thin films on substrates , 2002 .

[204]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[205]  Bharat Bhushan,et al.  Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy , 2000 .

[206]  M. Meyyappan,et al.  Improved fabrication approach for carbon nanotube probe devices , 2000 .

[207]  Seiji Akita,et al.  Influence of Force Acting on Side Face of Carbon Nanotube in Atomic Force Microscopy , 2000 .

[208]  Kong,et al.  Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps , 2000, Physical review letters.

[209]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[210]  Terry A. Michalske,et al.  Accurate method for determining adhesion of cantilever beams , 1999 .

[211]  Robbins,et al.  Adsorbed layers and the origin of static friction , 1999, Science.

[212]  S. Akita,et al.  Carbon nanotube tips for a scanning probe microscope: their fabrication and properties , 1999 .

[213]  U. Suter,et al.  Local Bending Moment as a Measure of Adhesion: The Cantilever Beam Test , 1999 .

[214]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[215]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces , 1998 .

[216]  Shih-Cheng Hu,et al.  Measurements of air flow characteristics in a full-scale clean room , 1996 .

[217]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[218]  L. Penn,et al.  Improved analysis and experimental evaluation of the single filament pull-out test , 1992 .

[219]  A. Cros,et al.  Influence of low‐energy electron irradiation on the adhesion of gold films on a silicon substrate , 1986 .

[220]  M. Piggott,et al.  The glass fibre—polymer interface: I—theoretical consideration for single fibre pull-out tests , 1985 .

[221]  D. Nicholson Peel mechanics with large bending , 1977, International Journal of Fracture.

[222]  D. Tabor Surface Forces and Surface Interactions , 1977 .

[223]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[224]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[225]  L. E. Scriven,et al.  Pendular rings between solids: meniscus properties and capillary force , 1975, Journal of Fluid Mechanics.

[226]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[227]  R. I. Hawes,et al.  Forces Between Slurry Particles Due To Surface Tension , 1961 .

[228]  John Edward Lennard-Jones,et al.  Perturbation problems in quantum mechanics , 1930 .