Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces

We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlin- ear differential equations of Sobolev type in Hilbert spaces. We use Holder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted di- rectly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.

[1]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[2]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[3]  Yong Zhou,et al.  Existence of mild solutions for fractional neutral evolution equations , 2010, Comput. Math. Appl..

[4]  Jin Liang,et al.  Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions , 2012 .

[5]  A. El-Sayed,et al.  Fractional-order diffusion-wave equation , 1996 .

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  M. El-Borai Some probability densities and fundamental solutions of fractional evolution equations , 2002 .

[8]  Nagarajan Sukavanam,et al.  Approximate controllability of fractional order semilinear systems with bounded delay , 2012 .

[9]  Shurong Sun,et al.  Positive solutions to fractional boundary value problems with nonlinear boundary conditions , 2014 .

[10]  Delfim F. M. Torres,et al.  Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces , 2013, Int. J. Control.

[11]  Delfim F. M. Torres,et al.  Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions , 2014, Appl. Math. Comput..

[12]  Qigui Yang,et al.  On almost periodic mild solutions for stochastic functional differential equations , 2012 .

[13]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[14]  Samuel Zaidman,et al.  Abstract differential equations , 1979 .

[15]  Rathinasamy Sakthivel,et al.  Controllability for a class of fractional-order neutral evolution control systems , 2012, Appl. Math. Comput..

[16]  Dumitru Baleanu,et al.  Existence of Solutions for Fractional Differential Inclusions with Separated Boundary Conditions in Banach Space , 2013 .

[17]  Ravi P. Agarwal,et al.  Nonlocal nonlinear integrodifferential equations of fractional orders , 2012 .

[18]  Yong-Kui Chang,et al.  Stepanov-like almost automorphy for stochastic processes and applications to stochastic differential equations , 2011 .

[19]  Roberto Triggiani,et al.  A Note on the Lack of Exact Controllability for Mild Solutions in Banach Spaces , 1977 .

[20]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[21]  Dumitru Baleanu,et al.  Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems , 2011, Comput. Math. Appl..

[22]  Nagarajan Sukavanam,et al.  Approximate Controllability of Fractional Order Semilinear Delay Systems , 2011, J. Optim. Theory Appl..

[23]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[24]  JinRong Wang,et al.  Controllability of Fractional Functional Evolution Equations of Sobolev Type via Characteristic Solution Operators , 2013, J. Optim. Theory Appl..

[25]  Jin-Mun Jeong,et al.  Controllability for Semilinear Retarded Control Systems in Hilbert Spaces , 2007 .

[26]  Sakthivel Rathinasamy,et al.  Approximate Controllability of Fractional Differential Equations with State-Dependent Delay , 2013 .

[27]  Rathinasamy Sakthivel,et al.  Existence of solutions for nonlinear fractional stochastic differential equations , 2013 .

[28]  Selvaraj Marshal Anthoni,et al.  Approximate controllability of nonlinear fractional dynamical systems , 2013, Commun. Nonlinear Sci. Numer. Simul..

[29]  Zuomao Yan,et al.  Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay , 2012, Int. J. Control.

[30]  Nazim I. Mahmudov,et al.  On Concepts of Controllability for Deterministic and Stochastic Systems , 1999 .

[31]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[32]  Zuomao Yan,et al.  Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces , 2013, IMA J. Math. Control. Inf..

[33]  Dumitru Baleanu,et al.  Approximate Controllability of Sobolev Type Nonlocal Fractional Stochastic Dynamic Systems in Hilbert Spaces , 2013 .

[34]  Xuerong Mao,et al.  Stochastic differential equations and their applications , 1997 .

[35]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[36]  Rathinasamy Sakthivel,et al.  Approximate controllability of fractional stochastic evolution equations , 2012, Comput. Math. Appl..

[37]  Nagarajan Sukavanam,et al.  APPROXIMATE CONTROLLABILITY OF SEMILINEAR DELAY CONTROL SYSTEMS , 2016 .

[38]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[39]  Rathinasamy Sakthivel,et al.  On the approximate controllability of semilinear fractional differential systems , 2011, Comput. Math. Appl..

[40]  Nazim I. Mahmudov,et al.  Approximate controllability of semilinear functional equations in Hilbert spaces , 2002 .

[41]  Nazim I. Mahmudov,et al.  Approximate Controllability of Semilinear Deterministic and Stochastic Evolution Equations in Abstract Spaces , 2003, SIAM J. Control. Optim..

[42]  Rathinasamy Sakthivel,et al.  Approximate Controllability of Fractional Neutral Stochastic System with Infinite Delay , 2012 .

[43]  A. Cernea On a fractional integro-differential inclusion , 2014 .

[44]  Jin-Mun Jeong,et al.  CONTROLLABILITY FOR SEMILINEAR FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS , 2009 .

[45]  Juan J. Nieto,et al.  Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls , 2014, Appl. Math. Comput..

[46]  R. Agarwal,et al.  A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , 2010 .

[47]  Amar Debbouche,et al.  WEAK ALMOST PERIODIC AND OPTIMAL MILD SOLUTIONS OF FRACTIONAL EVOLUTION EQUATIONS , 2009 .

[48]  D. Baleanu,et al.  Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions , 2013 .

[49]  W. Bian Approximate Controllability for Semilinear Systems , 1998 .

[50]  Suzanne Lenhart,et al.  Controllability questions for nonlinear systems in abstract spaces , 1991 .