Static versus dynamic heterogeneities in the D = 3 Edwards-Anderson-Ising spin glass.

We numerically study the aging properties of the dynamical heterogeneities in the Ising spin glass. We find that a phase transition takes place during the aging process. Statics-dynamics correspondence implies that systems of finite size in equilibrium have static heterogeneities that obey finite-size scaling, thus signaling an analogous phase transition in the thermodynamical limit. We compute the critical exponents and the transition point in the equilibrium setting, and use them to show that aging in dynamic heterogeneities can be described by a finite-time scaling ansatz, with potential implications for experimental work.

[1]  G. Parisi,et al.  Replica Symmetry Breaking in Short-Range Spin Glasses: Theoretical Foundations and Numerical Evidences , 1999, cond-mat/9906076.

[2]  G. Parisi,et al.  Nonequilibrium spin-glass dynamics from picoseconds to a tenth of a second. , 2008, Physical review letters.

[3]  A Barrat,et al.  Real-space application of the mean-field description of spin-glass dynamics. , 2001, Physical review letters.

[4]  D. Bailin Field theory , 1979, Nature.

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  Schofield,et al.  Three-dimensional direct imaging of structural relaxation near the colloidal glass transition , 2000, Science.

[7]  L. Berthier,et al.  Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition , 2005, Science.

[8]  C. L. Ullod,et al.  Critical behavior of the three-dimensional Ising spin glass , 2000 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  D. Yllanes,et al.  Tethered Monte Carlo: Computing the effective potential without critical slowing down , 2008, 0806.0543.

[11]  S. F. Schifano,et al.  Nature of the spin-glass phase at experimental length scales , 2010, 1003.2569.

[12]  J. Bouchaud,et al.  Aging, rejuvenation and memory phenomena in spin glasses , 2004, cond-mat/0406721.

[13]  N. Israeloff,et al.  Nanoscale non-equilibrium dynamics and the fluctuation–dissipation relation in an ageing polymer glass , 2010, 1005.2515.

[14]  G. G. Wood,et al.  EXTRACTION OF THE SPIN GLASS CORRELATION LENGTH , 1999 .

[15]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[16]  I. Morgenstern,et al.  Heidelberg Colloquium on Glassy Dynamics , 1987 .

[17]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[18]  G. Parisi,et al.  Structure of correlations in three dimensional spin glasses. , 2009, Physical review letters.

[19]  UNIVERSAL FINITE-SIZE SCALING FUNCTIONS IN THE 3D ISING SPIN GLASS , 1999, cond-mat/9904246.

[20]  Andrea Cavagna,et al.  Supercooled liquids for pedestrians , 2009, 0903.4264.

[21]  Growing dynamical length, scaling, and heterogeneities in the 3D Edwards–Anderson model , 2007, cond-mat/0701116.

[22]  S. F. Schifano,et al.  An In-Depth View of the Microscopic Dynamics of Ising Spin Glasses at Fixed Temperature , 2008, 0811.2864.

[23]  J. Bouchaud,et al.  Spin anisotropy and slow dynamics in spin glasses. , 2004, Physical review letters.

[24]  Lundgren,et al.  Static scaling in a short-range Ising spin glass. , 1991, Physical review. B, Condensed matter.

[25]  R. Orbach,et al.  Full aging in spin glasses. , 2002, Physical review letters.

[26]  Measuring Equilibrium Properties in Aging Systems , 1998, cond-mat/9803108.

[27]  Cugliandolo,et al.  Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. , 1993, Physical review letters.