Identifiability and excitation of polynomial systems

This paper establishes identifiability and informativity conditions for a class of deterministic linearly parametrized polynomial systems. The class considered is polynomial in the states and in the inputs. The standard definitions of identifiability and informativity for linear systems are expanded to account for the situation where the identification is achieved either through the application of informative inputs or via the response to informative initial conditions. We provide necessary and sufficient conditions for identifiability from the initial state, respectively from the input, as well as necessary and sufficient conditions on the initial state, respectively on the input, to produce an informative experiment.

[1]  Xavier Bombois,et al.  Informative data and identifiability in LPV-ARX prediction-error identification , 2011, IEEE Conference on Decision and Control and European Control Conference.

[2]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[3]  Iven M. Y. Mareels,et al.  Persistency of excitation criteria for linear, multivariable, time-varying systems , 1988, Math. Control. Signals Syst..

[4]  Xavier Bombois,et al.  Necessary and sufficient conditions for uniqueness of the minimum in Prediction Error Identification , 2012, Autom..

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  Đurđa Vasić-Rački,et al.  Modelling of the alcohol dehydrogenase production in baker's yeast , 2003 .

[7]  Alexandre Megretski,et al.  Input Classes for Identifiability of Bilinear Systems , 2009, IEEE Transactions on Automatic Control.

[8]  S. Dasgupta,et al.  Persistent excitation in bilinear systems , 1991 .

[9]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[10]  Xavier Bombois,et al.  Identification and the Information Matrix: How to Get Just Sufficiently Rich? , 2009, IEEE Transactions on Automatic Control.

[11]  G. Kreisselmeier,et al.  Richness and excitation on an interval-with application to continuous-time adaptive control , 1990 .

[12]  Michel Gevers,et al.  Identifiability of Scalar Linearly Parametrized Polynomial Systems , 1991 .

[13]  E. Bai,et al.  Persistency of excitation, sufficient richness and parameter convergence in discrete time adaptive control☆ , 1985 .

[14]  I. Kanellakopoulos,et al.  Nonlinearities enhance parameter convergence in output-feedback systems , 1998, IEEE Trans. Autom. Control..

[15]  Denis Dochain,et al.  State and parameter estimation in chemical and biochemical processes: a tutorial , 2003 .

[16]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..