Sulfur Poisoning of Electrochemical Reformate Conversion on Ni/Gadolinium-Doped Ceria Electrodes

The aim of the present study is the measurement and understanding of sulfur poisoning phe-nomena in Ni/gadolinium-doped ceria (CGO) based solid oxide fuel cells (SOFC) operating on reformate fuels. The sulfur poisoning behavior of commercial, high-performance electro-lyte-supported cells (ESC) with Ni/Ce0.9Gd0.1O2‒(CGO10) anodes operated with different fuels was thoroughly investigated by means of current-voltage characteristics and electro-chemical impedance spectroscopy, and compared with Ni/Yttria-stabilized zirconia (YSZ) anodes. Various methane- and carbon monoxide-containing fuels were used in order to eluci-date the underlying reaction mechanism. The analysis of the cell resistance increase in H2/H2O/CO/CO2 fuel gas mixtures revealed that the poisoning behavior is mainly governed by an inhibited hydrogen oxidation reaction at low current densities. At higher current densities, the resistance increase becomes increasingly large, indicating a particularly severe poisoning effect on the carbon monox...

[1]  S. Neophytides,et al.  Electrocatalytic performance and carbon tolerance of ternary Au-Mo-Ni/GDC SOFC anodes under CH4-rich Internal Steam Reforming conditions , 2017, Catalysis Today.

[2]  E. Ivers-Tiffée,et al.  A Non-Isothermal 2D Stationary FEM Model for Hydrocarbon Fueled SOFCs Stack Layers , 2017 .

[3]  K. Friedrich,et al.  Sulfur Poisoning of Ni/CGO Anodes: A Long-Term Degradation Study , 2017 .

[4]  K. Friedrich,et al.  Evaluation of the Effect of Sulfur on the Performance of Nickel/Gadolinium‐Doped Ceria Based Solid Oxide Fuel Cell Anodes , 2016, ChemSusChem.

[5]  Alexander Michaelis,et al.  Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells , 2016, Materials.

[6]  M. Bram,et al.  The Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres , 2016, Materials.

[7]  Christopher Graves,et al.  Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes. , 2015, Faraday discussions.

[8]  S. Neophytides,et al.  Sulfur Tolerance of Au–Mο–Ni/GDC SOFC Anodes Under Various CH4 Internal Steam Reforming Conditions , 2015, Topics in Catalysis.

[9]  F. Tietz,et al.  Systematic Parameter Study on the Influence of Humidification and Current Density on SOEC Degradation , 2015 .

[10]  W. Chueh,et al.  Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO(2-x): coupling between Ce(3+) and carbonate adsorbates. , 2015, Physical chemistry chemical physics : PCCP.

[11]  A. Latz,et al.  The Influence of Sulfur Formation on Performance and Reforming Chemistry of SOFC Anodes Operating on Methane Containing Fuel , 2015 .

[12]  A. Latz,et al.  Elementary Kinetic Numerical Simulation of Ni/YSZ SOFC Anode Performance Considering Sulfur Poisoning , 2015 .

[13]  A. Hagen,et al.  Electrochemical evaluation of sulfur poisoning in a methane-fuelled solid oxide fuel cell: Effect of current density and sulfur concentration , 2014 .

[14]  V. Yurkiv,et al.  Reformate-operated SOFC anode performance and degradation considering solid carbon formation: A modeling and simulation study , 2014 .

[15]  Dimitrios K. Niakolas,et al.  Sulfur poisoning of Ni-based anodes for Solid Oxide Fuel Cells in H/C-based fuels , 2014 .

[16]  Tingshuai Li,et al.  Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell , 2014 .

[17]  Zhi-Xun Shen,et al.  Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface , 2014, Nature Communications.

[18]  Chang Won Yoon,et al.  Mechanisms of enhanced sulfur tolerance on samarium (Sm)-doped cerium oxide (CeO2) from first principles. , 2014, Physical chemistry chemical physics : PCCP.

[19]  W. Bessler,et al.  Impedance of the Surface Double Layer of LSCF/CGO Composite Cathodes: An Elementary Kinetic Model , 2014 .

[20]  A. Hagen,et al.  Sulfur Poisoning of SOFC Anodes: Effect of Overpotential on Long-Term Degradation , 2014 .

[21]  V. Thangadurai,et al.  Enhanced hydrogen oxidation activity and H 2 S tolerance of Ni-infiltrated ceria solid oxide fuel cell anodes , 2013 .

[22]  S. Neophytides,et al.  Mathematical modeling of Ni/GDC and Au–Ni/GDC SOFC anodes performance under internal methane steam reforming conditions , 2013 .

[23]  E. Ivers-Tiffée,et al.  Sulfur Poisoning of Anode‐Supported SOFCs under Reformate Operation , 2013 .

[24]  R. Schlögl,et al.  On the Active Surface State of Nickel‐Ceria Solid Oxide Fuel Cell Anodes During Methane Electrooxidation , 2013 .

[25]  S. Nam,et al.  Effects of the Sm0.2Ce0.8O2-δ Modification of a Ni-Based Anode on the H2S Tolerance for Intermediate Temperature Solid Oxide Fuel Cells , 2013 .

[26]  A. Hagen Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells , 2013 .

[27]  A. Michaelis,et al.  Comparison of the performances of single cell solid oxide fuel cell stacks with Ni/8YSZ and Ni/10CGO anodes with H2S containing fuel , 2012 .

[28]  D. Vlachos,et al.  DFT Study of the Water–Gas Shift Reaction and Coke Formation on Ni(111) and Ni(211) Surfaces , 2012 .

[29]  W. Chueh,et al.  Electrochemistry of mixed oxygen ion and electron conducting electrodes in solid electrolyte cells. , 2012, Annual review of chemical and biomolecular engineering.

[30]  W. Chueh,et al.  Highly Enhanced Concentration and Stability of Reactive Ce3+ on Doped CeO2 Surface Revealed In Operando , 2012 .

[31]  E. Ivers-Tiffée,et al.  Electrochemical Analysis of Sulfur-Poisoning in Anode Supported SOFCs Fuelled with a Model Reformate , 2012 .

[32]  E. Ivers-Tiffée,et al.  Elementary kinetic modeling and experimental validation of electrochemical CO oxidation on Ni/YSZ pattern anodes , 2012 .

[33]  W. Chueh,et al.  High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. , 2012, Nature materials.

[34]  A. Hagen,et al.  Durability of solid oxide fuel cells using sulfur containing fuels , 2011 .

[35]  E. Ivers-Tiffée,et al.  Studying the COCO 2 characteristics of SOFC anodes by means of patterned Ni anodes , 2011 .

[36]  Ellen Ivers-Tiffée,et al.  Electrochemical Analysis of Reformate-Fuelled Anode Supported SOFC , 2011 .

[37]  Alexander Michaelis,et al.  Recent Development of Electrolyte Supported Cells with High Power Density , 2011 .

[38]  Kohei Ito,et al.  Sulfur Poisoning of SOFCs:Dependence on Operational Parameters , 2011 .

[39]  W. Bessler,et al.  Kinetic Modeling of Nickel Oxidation in SOFC Anodes , 2011 .

[40]  W. Bessler,et al.  Elementary Reaction Kinetics of the CO ∕ CO2 ∕ Ni ∕ YSZ Electrode , 2011 .

[41]  J. Zondlo,et al.  An H2S-Tolerant Ni-GDC Anode with a GDC Barrier Layer , 2011 .

[42]  J. Hansen Methanol reformer design considerations , 2010 .

[43]  J. F. B. Rasmussen,et al.  The Effect of H2S on the Performance of SOFCs using Methane Containing Fuel , 2010 .

[44]  Roger L. Farrow,et al.  In Situ Characterization of Ceria Oxidation States in High-Temperature Electrochemical Cells with Ambient Pressure XPS , 2010 .

[45]  San Ping Jiang,et al.  A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDC anodes of solid oxide fuel cells , 2010 .

[46]  Zahid Hussain,et al.  Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. , 2010, Nature materials.

[47]  K. Sasaki,et al.  Internal reforming SOFC running on biogas , 2010 .

[48]  Boris Iwanschitz,et al.  Degradation of SOFC Anodes upon Redox Cycling: A Comparison Between Ni/YSZ and Ni/CGO , 2010 .

[49]  Boris Iwanschitz,et al.  Status of Hexis' SOFC Stack Development and the Galileo 1000 N Micro-CHP System , 2009 .

[50]  W. Chueh,et al.  Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. , 2009, Physical chemistry chemical physics : PCCP.

[51]  V. Birss,et al.  Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells , 2009 .

[52]  John Bøgild Hansen,et al.  Correlating Sulfur Poisoning of SOFC Nickel Anodes by a Temkin Isotherm , 2008 .

[53]  Hongpeng He,et al.  Sulphur tolerant shift reaction catalysts for nickel-based SOFC anode , 2008 .

[54]  Nigel P. Brandon,et al.  The effect of fuel composition and temperature on the interaction of H2S with nickel-ceria anodes for Solid Oxide Fuel Cells , 2008 .

[55]  D. Alfonso First-principles studies of H2S adsorption and dissociation on metal surfaces , 2008 .

[56]  K. Sasaki Thermochemical stability of sulfur compounds in fuel cell gases related to fuel impurity poisoning , 2008 .

[57]  Kazuhisa Sato,et al.  Electrochemical Behaviors of Mixed Conducting Oxide Anodes for Solid Oxide Fuel Cell , 2008 .

[58]  Umit S. Ozkan,et al.  Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets , 2008 .

[59]  Nigel P. Brandon,et al.  Thermodynamic predictions of the impact of fuel composition on the propensity of sulphur to interact with Ni and ceria-based anodes for solid oxide fuel cells , 2008 .

[60]  A. Hagen,et al.  The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells , 2009 .

[61]  N. Woudstra,et al.  Impact of Biomass-Derived Contaminants on SOFCs with Ni/Gadolinia-Doped Ceria Anodes , 2008 .

[62]  John B. Goodenough,et al.  Alternative anode materials for solid oxide fuel cells , 2007 .

[63]  D. Mullins,et al.  Adsorption and reaction of hydrogen sulfide on thin-film cerium oxide , 2007 .

[64]  Meilin Liu,et al.  Influence of cell voltage and current on sulfur poisoning behavior of solid oxide fuel cells , 2007 .

[65]  Meilin Liu,et al.  Sulfur Poisoning and Regeneration of Ni-Based Anodes in Solid Oxide Fuel Cells , 2007 .

[66]  J. Fergus Electrolytes for solid oxide fuel cells , 2006 .

[67]  N. Woudstra,et al.  Biosyngas Utilization in Solid Oxide Fuel Cells With Ni∕GDC Anodes , 2006 .

[68]  K. Sasaki,et al.  H2S Poisoning of Solid Oxide Fuel Cells , 2006 .

[69]  N. Christiansen,et al.  Sites for catalysis and electrochemistry in solid oxide fuel cell (SOFC) anode , 2006 .

[70]  Jason P. Trembly,et al.  Effects of coal syngas and H2S on the performance of solid oxide fuel cells: Single-cell tests , 2006 .

[71]  O. Deutschmann,et al.  Methane reforming kinetics within a Ni–YSZ SOFC anode support , 2005 .

[72]  J. Llorca,et al.  Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders , 2005 .

[73]  R. Gorte,et al.  Studies of the water-gas-shift reaction with ceria-supported precious metals , 2005 .

[74]  J. Vohs,et al.  Highly Sulfur Tolerant Cu-Ceria Anodes for SOFCs , 2005 .

[75]  Juergen Fleig On the current-voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes. , 2005, Physical chemistry chemical physics : PCCP.

[76]  Robert J. Kee,et al.  Solid-oxide fuel cells with hydrocarbon fuels , 2005 .

[77]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[78]  W. L. Worrell,et al.  A Comparison of Cu-Ceria-SDC and Au-Ceria-SDC Composites for SOFC Anodes , 2003 .

[79]  Raymond J. Gorte,et al.  A Mechanistic Study of Sulfur Poisoning of the Water-Gas-Shift Reaction over Pd/Ceria , 2003 .

[80]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis gas by Steam- and CO2 reforming , 2002 .

[81]  Y. Matsuzaki,et al.  The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I , 2000 .

[82]  Yoshio Matsuzaki,et al.  Electrochemical Oxidation of H 2 and CO in a H 2 ‐ H 2 O ‐ CO ‐ CO 2 System at the Interface of a Ni‐YSZ Cermet Electrode and YSZ Electrolyte , 2000 .

[83]  Mogens Bjerg Mogensen,et al.  High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode , 1999 .

[84]  Mogens Bjerg Mogensen,et al.  Reaction of CO/CO2 gas mixtures on Ni–YSZ cermet electrodes , 1999 .

[85]  C. H. Bartholomew,et al.  Sulfur Poisoning of Metals , 1982 .

[86]  Jens R. Rostrup-Nielsen,et al.  High temperature hydrogen sulfide chemisorption on nickel catalysts , 1981 .

[87]  W. Erley,et al.  Sulfur poisoning of carbon monoxide adsorption on Ni(111) , 1978 .