Basc: constrained approximation by semidefinite programming
暂无分享,去创建一个
[1] K. R. Gehner. Characterization theorems for constrained approximation problems via optimization theory , 1975 .
[2] B. Chalmers. The Remez exchange algorithm for approximation with linear restrictions , 1976 .
[3] S. Bernstein. Sur la meilleure approximation de |x| par des polynomes de degrés donnés , 1914 .
[4] James T. Lewis. Approximation with Convex Constraints , 1973 .
[5] J. LaFountain. Inc. , 2013, American Art.
[6] R. Varga,et al. On the bernstein conjecture in approximation theory , 1985 .
[7] G. D. Taylor,et al. Calculation of Best Restricted Approximations , 1970 .
[8] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .
[9] Allan Pinkus,et al. Strong Uniqueness , 2010, 1001.3070.
[10] D. Leviatan,et al. Uniform and Pointwise Shape Preserving Approximation by Algebraic Polynomials , 2011, 1109.0968.
[11] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[12] Lieven Vandenberghe,et al. Discrete Transforms, Semidefinite Programming, and Sum-of-Squares Representations of Nonnegative Polynomials , 2006, SIAM J. Optim..