The apex of the family tree of protocols: optimal rates and resource inequalities

We establish bounds on the maximum entanglement gain and minimum quantum communication cost of the fully quantum Slepian–Wolf (FQSW) protocol in the one-shot regime, which is considered to be at the apex of the existing family tree in quantum information theory. These quantities, which are expressed in terms of smooth min- and max-entropies, reduce to the known rates of quantum communication cost and entanglement gain in the asymptotic independent and identically distributed scenario. We also provide an explicit proof of the optimality of these asymptotic rates. We introduce a resource inequality for the one-shot FQSW protocol, which in conjunction with our results yields achievable one-shot rates of its children protocols. In particular, it yields bounds on the one-shot quantum capacity of a noisy channel in terms of a single entropic quantity, unlike previous bounds. We also obtain an explicit expression for the achievable rate for one-shot state redistribution.

[1]  Nilanjana Datta,et al.  General Theory of Environment-Assisted Entanglement Distillation , 2010, IEEE Transactions on Information Theory.

[2]  Joseph M. Renes,et al.  One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.

[3]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[4]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[5]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[6]  Igor Devetak,et al.  Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[7]  R. Renner,et al.  The Decoupling Theorem , 2011 .

[8]  Francesco BuscemiNilanjana Datta General theory of assisted entanglement distillation , 2010 .

[9]  Nilanjana Datta,et al.  Distilling entanglement from arbitrary resources , 2010, 1006.1896.

[10]  F. Dupuis The decoupling approach to quantum information theory , 2010, 1004.1641.

[11]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[12]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[13]  Mark M. Wilde,et al.  Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.

[14]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[15]  Ke Li,et al.  A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[16]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[17]  M. Berta Single-shot Quantum State Merging , 2009, 0912.4495.

[18]  Mark M. Wilde,et al.  Public and private communication with a quantum channel and a secret key , 2009, 0903.3920.

[19]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[20]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[21]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[22]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[23]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Ming-Yong Ye,et al.  Quantum state redistribution based on a generalized decoupling , 2008 .

[25]  Jonathan Oppenheim State redistribution as merging: introducing the coherent relay , 2008 .

[26]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[27]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[28]  N. Datta,et al.  Asymptotic Entanglement Manipulation of Bipartite Pure States , 2006, IEEE Transactions on Information Theory.

[29]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[30]  A. Winter,et al.  Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2005, IEEE Transactions on Information Theory.

[31]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[32]  Nilanjana Datta,et al.  Beyond i.i.d. in Quantum Information Theory , 2006, 2006 IEEE International Symposium on Information Theory.

[33]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[34]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[35]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[36]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[37]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[39]  Peter W. Shor The classical capacity achievable by a quantum channel assisted by a limited entanglement , 2004, Quantum Inf. Comput..

[40]  A. Harrow,et al.  A family of quantum protocols , 2003, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[41]  A. Winter,et al.  Relating quantum privacy and quantum coherence: an operational approach. , 2003, Physical review letters.

[42]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[43]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.

[44]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[45]  M. Horodecki,et al.  Classical capacity of a noiseless quantum channel assisted by noisy entanglement , 2001, Quantum Inf. Comput..

[46]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[47]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[48]  Hoi-Kwong Lo,et al.  Classical Communication Cost of Entanglement Manipulation: Is Entanglement an Interconvertible Resource? , 1999, quant-ph/9902045.

[49]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[50]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[51]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[52]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[53]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[54]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[55]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[56]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[57]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .