Integrated Formal Methods

We present Unit-B, a formal method inspired by Event-B and UNITY, for designing systems via step-wise refinement preserving both safety and liveness properties. In particular, we introduce the notion of coarseand fineschedules for events, a generalisation of weakand strong-fairness assumptions. We propose proof rules for reasoning about progress properties related to the schedules. Furthermore, we develop techniques for refining systems by adapting event schedules such that liveness properties are preserved. We illustrate our approach by an example to show that Unit-B developments can be guided by both safety and liveness requirements.

[1]  Wang Yi,et al.  Efficient Timed Reachability Analysis using Clock Difference Diagrams , 1998 .

[2]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[3]  Kim G. Larsen,et al.  Staying Alive as Cheaply as Possible , 2004, HSCC.

[4]  Axel Legay,et al.  Statistical Model Checking: An Overview , 2010, RV.

[5]  Wang Yi,et al.  Efficient verification of real-time systems: compact data structure and state-space reduction , 1997, Proceedings Real-Time Systems Symposium.

[6]  Kim G. Larsen,et al.  Optimal reachability for multi-priced timed automata , 2008, Theor. Comput. Sci..

[7]  Kim G. Larsen,et al.  Priced Timed Automata: Algorithms and Applications , 2004, FMCO.

[8]  Kim G. Larsen,et al.  Distributed Parametric and Statistical Model Checking , 2011, PDMC.

[9]  Nicolas Markey,et al.  Verification of Embedded Systems — Algorithms and Complexity , 2011 .

[10]  Kim G. Larsen,et al.  Runtime Verification of Biological Systems , 2012, ISoLA.

[11]  Frédéric Magniez,et al.  Probabilistic abstraction for model checking: An approach based on property testing , 2007, TOCL.

[12]  Kim G. Larsen,et al.  Schedulability of Herschel-Planck Revisited Using Statistical Model Checking , 2012, ISoLA.

[13]  George J. Pappas,et al.  Optimal Paths in Weighted Timed Automata , 2001, HSCC.

[14]  Kim G. Larsen,et al.  Minimum-Cost Reachability for Priced Timed Automata , 2001, HSCC.

[15]  Maria Domenica Di Benedetto,et al.  Hybrid Systems: Computation and Control , 2001, Lecture Notes in Computer Science.

[16]  Hubert Comon,et al.  Computer Aided Verification , 2001, Lecture Notes in Computer Science.

[17]  Kim G. Larsen,et al.  To Store or Not to Store , 2003, CAV.

[18]  Kim G. Larsen,et al.  Optimal Conditional Reachability for Multi-priced Timed Automata , 2005, FoSSaCS.

[19]  Kim G. Larsen,et al.  Infinite Runs in Weighted Timed Automata with Energy Constraints , 2008, FORMATS.

[20]  Oded Maler,et al.  Task graph scheduling using timed automata , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[21]  Kim G. Larsen,et al.  A Tutorial on Uppaal , 2004, SFM.

[22]  Kim G. Larsen,et al.  Model Checking One-clock Priced Timed Automata , 2007, Log. Methods Comput. Sci..

[23]  Kim G. Larsen,et al.  Lower and Upper Bounds in Zone Based Abstractions of Timed Automata , 2004, TACAS.

[24]  Joost-Pieter Katoen,et al.  The Ins and Outs of the Probabilistic Model Checker MRMC , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[25]  Kim G. Larsen,et al.  Guided Synthesis of Control Programs Using UPPAAL , 2000, Nord. J. Comput..

[26]  Ansgar Fehnker,et al.  Scheduling a steel plant with timed automata , 1999, Proceedings Sixth International Conference on Real-Time Computing Systems and Applications. RTCSA'99 (Cat. No.PR00306).

[27]  Kim G. Larsen,et al.  An evaluation framework for energy aware buildings using statistical model checking , 2012, Science China Information Sciences.

[28]  Wang Yi,et al.  UPPAAL Implementation Secrets , 2002, FTRTFT.

[29]  Frits W. Vaandrager,et al.  Distributing Timed Model Checking - How the Search Order Matters , 2000, CAV.

[30]  Kim G. Larsen,et al.  Lower-Bound Constrained Runs in Weighted Timed Automata , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.

[31]  Kim G. Larsen,et al.  Complexity in Simplicity: Flexible Agent-Based State Space Exploration , 2007, TACAS.

[32]  Kim G. Larsen,et al.  Statistical Model Checking for Networks of Priced Timed Automata , 2011, FORMATS.

[33]  Véronique Bruyère,et al.  On the optimal reachability problem of weighted timed automata , 2007, Formal Methods Syst. Des..

[34]  Kim G. Larsen,et al.  Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic , 2012, LPAR.

[35]  Kim G. Larsen,et al.  Time for Statistical Model Checking of Real-Time Systems , 2011, CAV.

[36]  Véronique Bruyère,et al.  Model-Checking for Weighted Timed Automata , 2004, FORMATS/FTRTFT.

[37]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[38]  Oded Maler,et al.  Timed Automata as an Underlying Model for Planning and Scheduling , 2002, AIPS Workshop on Planning for Temporal Domains.

[39]  Karin Quaas,et al.  On the Interval-Bound Problem for Weighted Timed Automata , 2011, LATA.

[40]  Stavros Tripakis,et al.  Kronos: A Model-Checking Tool for Real-Time Systems , 1998, CAV.

[41]  Kim G. Larsen,et al.  Energy Games in Multiweighted Automata , 2011, ICTAC.

[42]  Kim G. Larsen,et al.  Optimal scheduling using priced timed automata , 2005, PERV.

[43]  Wang Yi,et al.  Clock Difference Diagrams , 1998, Nord. J. Comput..

[44]  Kim G. Larsen,et al.  Timed automata with observers under energy constraints , 2010, HSCC '10.

[45]  Mahesh Viswanathan,et al.  Statistical Model Checking of Black-Box Probabilistic Systems , 2004, CAV.

[46]  Kim G. Larsen,et al.  Optimal infinite scheduling for multi-priced timed automata , 2008, Formal Methods Syst. Des..

[47]  Kim G. Larsen,et al.  Discount-Optimal Infinite Runs in Priced Timed Automata , 2009, INFINITY.