Computing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures

An account on computation of integrals of highly oscillatory functions based on the so-called complex integration methods is presented. Beside the basic idea of this approach some applications in computation of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified Hermite weight are considered, including some numerical examples.

[1]  G. Milovanović Generalized Gaussian Quadratures for Integrals with Logarithmic Singularity , 2016 .

[2]  Chunhua Fang,et al.  On Filon methods for a class of Volterra integral equations with highly oscillatory Bessel kernels , 2015, Appl. Math. Comput..

[3]  Arieh Iserles,et al.  On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators , 2005 .

[4]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[5]  Gradimir V. Milovanovic,et al.  Gaussian-type Quadrature Rules for Müntz Systems , 2005, SIAM J. Sci. Comput..

[6]  Masatake Mori,et al.  Quadrature formulas obtained by variable transformation , 1973 .

[7]  Roderick Wong,et al.  Quadrature formulas for oscillatory integral transforms , 1982 .

[8]  G. Milovanović,et al.  Interpolation Processes: Basic Theory and Applications , 2008 .

[9]  Shunping Xiao,et al.  An improved Levin quadrature method for highly oscillatory integrals , 2010 .

[10]  Ruyun Chen Numerical approximations to integrals with a highly oscillatory Bessel kernel , 2012 .

[11]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[13]  Shuhuang Xiang,et al.  A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels , 2016, J. Comput. Appl. Math..

[14]  Walter Gautschi,et al.  Orthogonal Polynomials in MATLAB: Exercises and Solutions , 2016 .

[15]  Shuhuang Xiang,et al.  On the evaluation of Cauchy principal value integrals of oscillatory functions , 2010, J. Comput. Appl. Math..

[16]  Ruyun Chen,et al.  Numerical approximations for highly oscillatory Bessel transforms and applications , 2015 .

[17]  G. A. Evans,et al.  An expansion method for irregular oscillatory integrals , 1997, Int. J. Comput. Math..

[18]  Nico M. Temme,et al.  Basic Methods for Computing Special Functions , 2011 .

[19]  Ruyun Chen,et al.  On the implementation of the asymptotic Filon-type method for infinite integrals with oscillatory Bessel kernels , 2014, Appl. Math. Comput..

[20]  A. Iserles,et al.  On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .

[21]  Walter Gautschi Gauss quadrature routines for two classes of logarithmic weight functions , 2010, Numerical Algorithms.

[22]  Aleksandar S. Cvetković,et al.  THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .

[23]  Ruyun Chen,et al.  On the evaluation of Bessel transformations with the oscillators via asymptotic series of Whittaker functions , 2013, J. Comput. Appl. Math..

[24]  Congpei An,et al.  On the evaluation of infinite integrals involving Bessel functions , 2014, Appl. Math. Comput..

[25]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[26]  G. Monegato,et al.  Quadrature Rules for Unbounded Intervals and Their Application to Integral Equations , 2010 .

[27]  A. Iserles On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .

[28]  G. Evans,et al.  Two robust methods for irregular oscillatory integrals over a finite range , 1994 .

[29]  J. R. Webster,et al.  A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .

[30]  C. Vălean Integrals , 2019, (Almost) Impossible Integrals, Sums, and Series.

[31]  Shuhuang Xiang,et al.  On the evaluation of highly oscillatory finite Hankel transform using special functions , 2015, Numerical Algorithms.

[32]  Shuhuang Xiang,et al.  On the calculation of highly oscillatory integrals with an algebraic singularity , 2010, Appl. Math. Comput..

[33]  Masao Iri,et al.  On a certain quadrature formula , 1987 .

[34]  André D. Bandrauk,et al.  Molecules in Laser Fields , 1995 .

[35]  Junjie Ma,et al.  Oscillation-free solutions to Volterra integral and integro-differential equations with periodic force terms , 2017, Appl. Math. Comput..

[36]  Zhenhua Xu,et al.  Efficient method for the computation of oscillatory Bessel transform and Bessel Hilbert transform , 2016, J. Comput. Appl. Math..

[37]  Bruno Gabutti,et al.  On high precision methods for computing integrals involving Bessel functions , 1979 .

[38]  Shuhuang Xiang,et al.  Efficient computation of highly oscillatory integrals with Hankel kernel , 2015, Appl. Math. Comput..

[39]  Gradimir V. Milovanovic,et al.  Generalized quadrature rules of Gaussian type for numerical evaluation of singular integrals , 2015, J. Comput. Appl. Math..

[40]  T. Sauter Computation of irregularly oscillating integrals , 2000 .

[41]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[42]  Michael Bader,et al.  A High-Order , 2019 .

[43]  Lawrence F. Shampine,et al.  Integrating oscillatory functions in Matlab , 2011, Int. J. Comput. Math..

[44]  Aleksandar S. Cvetković,et al.  Special Classes of Orthogonal Polynomials and Corresponding Quadratures of Gaussian Type , 2012 .

[45]  Gradimir V. Milovanović,et al.  Numerical Integration of Highly Oscillating Functions , 2014 .

[46]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[47]  Jörg Waldvogel,et al.  Towards a General Error Theory of the Trapezoidal Rule , 2010 .

[48]  A. I. Hasçelik Suitable Gauss and Filon-type methods for oscillatory integrals with an algebraic singularity , 2009 .

[49]  Gradimir V. Milovanović,et al.  Numerical Calculation of Integrals Involving Oscillatory and Singular Kernels and Some Applications of Quadratures , 1998 .

[50]  Masatake Mori,et al.  Quadrature formulas obtained by variable transformation and the DE-rule , 1985 .