Computing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures
暂无分享,去创建一个
[1] G. Milovanović. Generalized Gaussian Quadratures for Integrals with Logarithmic Singularity , 2016 .
[2] Chunhua Fang,et al. On Filon methods for a class of Volterra integral equations with highly oscillatory Bessel kernels , 2015, Appl. Math. Comput..
[3] Arieh Iserles,et al. On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators , 2005 .
[4] R. Askey. Orthogonal Polynomials and Special Functions , 1975 .
[5] Gradimir V. Milovanovic,et al. Gaussian-type Quadrature Rules for Müntz Systems , 2005, SIAM J. Sci. Comput..
[6] Masatake Mori,et al. Quadrature formulas obtained by variable transformation , 1973 .
[7] Roderick Wong,et al. Quadrature formulas for oscillatory integral transforms , 1982 .
[8] G. Milovanović,et al. Interpolation Processes: Basic Theory and Applications , 2008 .
[9] Shunping Xiao,et al. An improved Levin quadrature method for highly oscillatory integrals , 2010 .
[10] Ruyun Chen. Numerical approximations to integrals with a highly oscillatory Bessel kernel , 2012 .
[11] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[12] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[13] Shuhuang Xiang,et al. A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels , 2016, J. Comput. Appl. Math..
[14] Walter Gautschi,et al. Orthogonal Polynomials in MATLAB: Exercises and Solutions , 2016 .
[15] Shuhuang Xiang,et al. On the evaluation of Cauchy principal value integrals of oscillatory functions , 2010, J. Comput. Appl. Math..
[16] Ruyun Chen,et al. Numerical approximations for highly oscillatory Bessel transforms and applications , 2015 .
[17] G. A. Evans,et al. An expansion method for irregular oscillatory integrals , 1997, Int. J. Comput. Math..
[18] Nico M. Temme,et al. Basic Methods for Computing Special Functions , 2011 .
[19] Ruyun Chen,et al. On the implementation of the asymptotic Filon-type method for infinite integrals with oscillatory Bessel kernels , 2014, Appl. Math. Comput..
[20] A. Iserles,et al. On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .
[21] Walter Gautschi. Gauss quadrature routines for two classes of logarithmic weight functions , 2010, Numerical Algorithms.
[22] Aleksandar S. Cvetković,et al. THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .
[23] Ruyun Chen,et al. On the evaluation of Bessel transformations with the oscillators via asymptotic series of Whittaker functions , 2013, J. Comput. Appl. Math..
[24] Congpei An,et al. On the evaluation of infinite integrals involving Bessel functions , 2014, Appl. Math. Comput..
[25] Sheehan Olver,et al. Moment-free numerical integration of highly oscillatory functions , 2006 .
[26] G. Monegato,et al. Quadrature Rules for Unbounded Intervals and Their Application to Integral Equations , 2010 .
[27] A. Iserles. On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .
[28] G. Evans,et al. Two robust methods for irregular oscillatory integrals over a finite range , 1994 .
[29] J. R. Webster,et al. A high order, progressive method for the evaluation of irregular oscillatory integrals , 1997 .
[30] C. Vălean. Integrals , 2019, (Almost) Impossible Integrals, Sums, and Series.
[31] Shuhuang Xiang,et al. On the evaluation of highly oscillatory finite Hankel transform using special functions , 2015, Numerical Algorithms.
[32] Shuhuang Xiang,et al. On the calculation of highly oscillatory integrals with an algebraic singularity , 2010, Appl. Math. Comput..
[33] Masao Iri,et al. On a certain quadrature formula , 1987 .
[34] André D. Bandrauk,et al. Molecules in Laser Fields , 1995 .
[35] Junjie Ma,et al. Oscillation-free solutions to Volterra integral and integro-differential equations with periodic force terms , 2017, Appl. Math. Comput..
[36] Zhenhua Xu,et al. Efficient method for the computation of oscillatory Bessel transform and Bessel Hilbert transform , 2016, J. Comput. Appl. Math..
[37] Bruno Gabutti,et al. On high precision methods for computing integrals involving Bessel functions , 1979 .
[38] Shuhuang Xiang,et al. Efficient computation of highly oscillatory integrals with Hankel kernel , 2015, Appl. Math. Comput..
[39] Gradimir V. Milovanovic,et al. Generalized quadrature rules of Gaussian type for numerical evaluation of singular integrals , 2015, J. Comput. Appl. Math..
[40] T. Sauter. Computation of irregularly oscillating integrals , 2000 .
[41] Daan Huybrechs,et al. On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..
[42] Michael Bader,et al. A High-Order , 2019 .
[43] Lawrence F. Shampine,et al. Integrating oscillatory functions in Matlab , 2011, Int. J. Comput. Math..
[44] Aleksandar S. Cvetković,et al. Special Classes of Orthogonal Polynomials and Corresponding Quadratures of Gaussian Type , 2012 .
[45] Gradimir V. Milovanović,et al. Numerical Integration of Highly Oscillating Functions , 2014 .
[46] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[47] Jörg Waldvogel,et al. Towards a General Error Theory of the Trapezoidal Rule , 2010 .
[48] A. I. Hasçelik. Suitable Gauss and Filon-type methods for oscillatory integrals with an algebraic singularity , 2009 .
[49] Gradimir V. Milovanović,et al. Numerical Calculation of Integrals Involving Oscillatory and Singular Kernels and Some Applications of Quadratures , 1998 .
[50] Masatake Mori,et al. Quadrature formulas obtained by variable transformation and the DE-rule , 1985 .