Performance forecasts for the primordial gravitational wave detection pipelines for AliCPT-1

. AliCPT is the first Chinese cosmic microwave background (CMB) experiment which will make the most precise measurements of the CMB polarization in the northern hemisphere. The key science goal for AliCPT is the detection of primordial gravitational waves (PGWs). It is well known that an epoch of cosmic inflation, in the very early universe, can produce PGWs, which leave an imprint on the CMB in form of odd parity B -mode polarization. In this work, we study the performance of the component separation and parameter estimation pipelines in context of constraining the value of the tensor-to-scalar ratio. Based on the simulated data for one observation season, we compare five different pipelines with different working principles. Three pipelines perform component separation at map or spectra level before estimating r from the cleaned spectra, while the other two pipelines performs a global fit for both foreground parameters and r . We also test different methods to account for the effects of time stream filtering systematics. This work shows that our pipelines provide consistent and robust constraints on the tensor-to-scalar ratio and a consistent sensitivity σ p r q „ 0 . 02 . This showcases the potential of precise B -mode polarization measurement with AliCPT-1. AliCPT will provide a powerful opportunity to detect PGWs, which is comple-mentary with various ground-based CMB experiments in the southern hemisphere.

[1]  Caltech,et al.  The Latest Constraints on Inflationary B-modes from the BICEP/Keck Telescopes , 2022, 2203.16556.

[2]  Shamik Ghosh,et al.  Scalar Quadratic Maximum-likelihood Estimators for the CMB Cross-power Spectrum , 2022, The Astrophysical Journal Supplement Series.

[3]  J. A. Bonetti,et al.  A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope , 2021, The Astrophysical Journal.

[4]  Adrian T. Lee,et al.  CMB-S4: Forecasting Constraints on Primordial Gravitational Waves , 2020, The Astrophysical Journal.

[5]  Hong Li,et al.  Fast Scalar Quadratic Maximum Likelihood Estimators for the CMB B-mode Power Spectrum , 2021, The Astrophysical Journal Supplement Series.

[6]  S. Ghosh,et al.  Testing the analytical blind separation method in simulated CMB polarization maps , 2021, Astronomy & Astrophysics.

[7]  J. Delabrouille,et al.  Towards ending the partial sky E-B ambiguity in CMB observations , 2020, Journal of Cosmology and Astroparticle Physics.

[8]  Gong-Bo Zhao,et al.  The design of the Ali CMB Polarization Telescope receiver , 2020, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X.

[9]  C. Baccigalupi,et al.  The large scale polarization explorer (LSPE) for CMB measurements: performance forecast , 2020, 2008.11049.

[10]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: DR4 maps and cosmological parameters , 2020, Journal of Cosmology and Astroparticle Physics.

[11]  M. Remazeilles,et al.  Peeling off foregrounds with the constrained moment ILC method to unveil primordial CMB B modes , 2020, 2006.08628.

[12]  Adrian T. Lee,et al.  Measurements of B -mode polarization of the cosmic microwave background from 500 square degrees of SPTpol data , 2019, Physical Review D.

[13]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  V. Buza Constraining Primordial Gravitational Waves Using Present and Future CMB Experiments , 2019 .

[15]  Blind correction of the EB-leakage in the pixel domain , 2019, Journal of Cosmology and Astroparticle Physics.

[16]  P. A. R. Ade,et al.  LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection , 2019, Journal of Low Temperature Physics.

[17]  Peter Ade,et al.  QUBIC: Exploring the Primordial Universe with the Q&U Bolometric Interferometer , 2018, Universe.

[18]  P. Naselsky,et al.  Methods for pixel domain correction of EB leakage , 2018, Physical Review D.

[19]  A. Slosar,et al.  A unified pseudo-Cℓ framework , 2018, Monthly Notices of the Royal Astronomical Society.

[20]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[21]  Edward Higson,et al.  Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation , 2017, Statistics and Computing.

[22]  Jun Zhang,et al.  ABS: an analytical method of blind separation of CMB from foregrounds , 2016, Monthly Notices of the Royal Astronomical Society.

[23]  Jun Zhang,et al.  Testing the ABS Method with the Simulated Planck Temperature Maps , 2018, The Astrophysical Journal Supplement Series.

[24]  C. A. Oxborrow,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[25]  A. Gilbert,et al.  A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Subdegree Scales from Two Years of polarbear Data , 2017, 1705.02907.

[26]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.

[27]  Aamir Ali,et al.  The Cosmology Large Angular Scale Surveyor , 2016, Astronomical Telescopes + Instrumentation.

[28]  Smoothing methods comparison for CMB E- and B-mode separation , 2015, 1511.01220.

[29]  G. W. Pratt,et al.  Planck intermediate results - XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes , 2014, 1409.5738.

[30]  A. Gilbert,et al.  The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.

[31]  P. A. R. Ade,et al.  MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2015, 1503.02315.

[32]  A. G. Vieregg,et al.  BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY , 2015, 1502.00643.

[33]  R. W. Ogburn,et al.  Joint Analysis of BICEP 2 / Keck ArrayandPlanckData , 2015 .

[34]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[35]  C. A. Oxborrow,et al.  Planck2013 results. XII. Diffuse component separation , 2013, Astronomy & Astrophysics.

[36]  R. Stompor,et al.  Efficiency of pseudospectrum methods for estimation of the cosmic microwave background B-mode power spectrum , 2013, 1305.7441.

[37]  J. Aumont,et al.  The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths , 2012, 1207.3675.

[38]  Jacques Delabrouille,et al.  A needlet ILC analysis of WMAP 9-year polarization data: CMB polarization power spectra , 2012, 1204.0292.

[39]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[40]  Radek Stompor,et al.  CMB E B and T B cross-spectrum estimation via pseudospectrum techniques , 2012, 1207.5344.

[41]  Jacques Delabrouille,et al.  A needlet internal linear combination analysis of WMAP 7-year data: estimation of CMB temperature map and power spectrum , 2011, 1106.5383.

[42]  Jaiseung Kim,et al.  How to make a clean separation between CMB E and B modes with proper foreground masking , 2010, 1010.2636.

[43]  P. Naselsky,et al.  E/B decomposition of CMB polarization pattern of incomplete sky: a pixel space approach , 2010 .

[44]  J. Cardoso,et al.  CMB and SZ effect separation with constrained Internal Linear Combinations , 2010, 1006.5599.

[45]  D. Baskaran,et al.  Separating E and B types of polarization on an incomplete sky , 2010, 1005.1201.

[46]  R. Stompor,et al.  Polarized CMB power spectrum estimation using the pure pseudo-cross-spectrum approach , 2009, 0903.2350.

[47]  L. Grishchuk,et al.  On the road to discovery of relic gravitational waves : The TE and BB correlations in the cosmic microwave background radiation , 2008, 0810.0756.

[48]  Jean-François Cardoso,et al.  Component Separation With Flexible Models—Application to Multichannel Astrophysical Observations , 2008, IEEE Journal of Selected Topics in Signal Processing.

[49]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[50]  Antony Lewis,et al.  Likelihood Analysis of CMB Temperature and Polarization Power Spectra , 2008, 0801.0554.

[51]  S. Prunet,et al.  CMB anisotropy power spectrum using linear combinations of WMAP maps , 2007, 0706.3567.

[52]  J. Cardoso,et al.  Diffuse Source Separation in CMB Observations , 2007, astro-ph/0702198.

[53]  Kendrick M. Smith,et al.  General solution to the E-B mixing problem , 2006, astro-ph/0610059.

[54]  Kendrick Smith Pseudo- C ℓ estimators which do not mix E and B modes , 2005, astro-ph/0511629.

[55]  T. Souradeep,et al.  A Blind Estimation of the Angular Power Spectrum of CMB Anisotropy from WMAP , 2005, astro-ph/0508383.

[56]  Yang-Hong Zhang,et al.  Analytic Approach to the CMB Polarization Generated by Relic Gravitational Waves , 2005, astro-ph/0508345.

[57]  J. Cardoso,et al.  Cosmic microwave background and foregrounds in Wilkinson Microwave Anisotropy Probe first-year data , 2005 .

[58]  J. Cardoso,et al.  The CMB temperature power spectrum from an improved analysis of the Archeops data , 2004, astro-ph/0411633.

[59]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[60]  H. K. Eriksen,et al.  On Foreground Removal from the Wilkinson Microwave Anisotropy Probe Data by an Internal Linear Combination Method: Limitations and Implications , 2004, astro-ph/0403098.

[61]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[62]  Max Tegmark,et al.  High resolution foreground cleaned CMB map from WMAP , 2003, astro-ph/0302496.

[63]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[64]  J. Cardoso,et al.  Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis , 2002, astro-ph/0211504.

[65]  Fast cosmic microwave background power spectrum estimation of temperature and polarization with Gabor transforms , 2002, astro-ph/0207526.

[66]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[67]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[68]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[69]  Max Tegmark,et al.  Removing point sources from CMB maps , 1998, astro-ph/9802123.

[70]  W. White,et al.  A CMB polarization primer , 1997 .

[71]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[72]  M. Kamionkowski,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1996, astro-ph/9609132.

[73]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[74]  E. L. Wright,et al.  Preliminary separation of galactic and cosmic microwave emission for the COBE Differential Microwave Radiometer , 1992 .

[75]  V. Mukhanov Gravitational Instability of the Universe Filled with a Scalar Field , 1985 .

[76]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[77]  A. Starobinsky,et al.  Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations , 1982 .

[78]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[79]  Stephen W. Hawking,et al.  The Development of Irregularities in a Single Bubble Inflationary Universe , 1982 .

[80]  V. Mukhanov,et al.  Vacuum energy and large-scale structure of the Universe , 1982 .

[81]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[82]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[83]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[84]  Viatcheslav Mukhanov,et al.  Quantum Fluctuations and a Nonsingular Universe , 1981 .

[85]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[86]  D. Kazanas Dynamics of the universe and spontaneous symmetry breaking , 1980 .

[87]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[88]  F. Englert,et al.  The Creation of the Universe as a Quantum Phenomenon , 1978 .