Kinetic aspects of oxidation and combustion of silane and related compounds

Present day knowledge of oxidation and combustion of SiH4 and related species are summarized from three different view points; (1) phenomenology of oxidation and combustion, in particular ignition, (2) kinetic modeling of combustion, and (3) the present status of relevant elementary reactions.

[1]  Michael E. Coltrin,et al.  Theoretical study of the heats of formation of Si2Hn (n = 0-6) compounds and trisilane , 1986 .

[2]  S. Nagase,et al.  Theoretical study of silanone. Thermodynamic and kinetic stability , 1984 .

[3]  J. Jasinski,et al.  Direct kinetic studies of SiH3+SiH3, H, CCl4, SiD4, Si2H6, and C3H6 by tunable infrared diode laser spectroscopy , 1991 .

[4]  M. Allendorf,et al.  Theoretical study of the thermochemistry of molecules in the silicon-carbon-hydrogen system , 1992 .

[5]  S. Nagase,et al.  MR CI calculations of the low-lying excited states of silanone (H2SiO) , 1986 .

[6]  J. Jasinski,et al.  Absolute rate constants for silylene reactions with diatomic molecules , 1988 .

[7]  W. Richardson,et al.  Kinetic determinations of the heats of formation of methylated disilanes and of silylene, methylsilylene and dimethylsilylene , 1989 .

[8]  V. V. Azatyan,et al.  Mechanism of silane oxidation , 1980 .

[9]  J. Wiesenfeld,et al.  Steric constraints on energy deposition in the hydroxyl product of the reaction of atomic oxygen(3PJ) with trimethylsilane , 1989 .

[10]  Harold L. Schick,et al.  A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica. , 1960 .

[11]  Laurence G. Britton,et al.  Combustion hazards of silane and its chlorides , 1990 .

[12]  L. Curtiss,et al.  Theoretical study of Si2Hn (n=0–6) and Si2H+n (n=0–7): Appearance potentials, ionization potentials, and enthalpies of formation , 1991 .

[13]  H. Emeléus,et al.  153. The oxidation of the silicon hydrides. Part II , 1935 .

[14]  Robin Walsh,et al.  Bond dissociation energy values in silicon-containing compounds and some of their implications , 1981 .

[15]  M. W. Chase JANAF thermochemical tables , 1986 .

[16]  S. Nagase,et al.  Theoretical study of a silylene-oxygen adduct. Is a silanone oxide structure (H2SiOO) kinetically stable in the singlet state? , 1989 .

[17]  D. Gutman,et al.  Kinetics of the reactions of SiH3 with O2 and N2O , 1988 .

[18]  P. Maker,et al.  An FTIR study of the kinetics and mechanism for the Cl- and Br-atom-initiated oxidation of SiH4 , 1985 .

[19]  M. Koshi,et al.  Kinetics of the silyl + oxygen reaction studied by time-resolved mass spectrometry , 1991 .

[20]  K. Sugawara,et al.  Rate constant measurements for reactions of SiH3 with O2, NO and NO2 using time-resolved infrared diode laser spectroscopy , 1989 .

[21]  M. Pilling,et al.  Kinetic and thermochemical study of the silyl + hydrogen bromide .dblharw. silane + bromine atom and silyl + hydrogen iodide .dblharw. silane + iodine atom equilibria , 1991 .

[22]  P. Maker,et al.  An FTIR study of the kinetics and mechanism for the chlorine- and bromine-atomic-initiated oxidation of silane , 1985 .

[23]  N. L. Arthur,et al.  Reaction of H atoms with some silanes and disilanes. Rate constants and Arrhenius parameters , 1989 .

[24]  R. T. White,et al.  Mechanism of the silane decomposition. I. Silane loss kinetics and rate inhibition by hydrogen. II. Modeling of the silane decomposition (all stages of reaction) , 1985 .

[25]  R. Walsh,et al.  Standard enthalpy of formation of hexamethyldisilane , 1991 .

[26]  A. Wolf,et al.  Rate constants for the reactions of atomic chlorine with Group 4 and Group 5 hydrides , 1978 .

[27]  Robin Walsh,et al.  Thermochemistry of silicon-containing compounds. Part 1.—Silicon–halogen compounds, an evaluation , 1983 .

[28]  B. H. Zwerver,et al.  Chemiluminescence during thermal chemical vapour deposition of SiO2 from silane-oxygen mixtures , 1988 .

[29]  M. Gordon,et al.  Thermal decomposition of silane. , 1986, Journal of the American Chemical Society.

[30]  L. Andrews,et al.  Matrix reactions of methylsilanes and oxygen atoms , 1988 .

[31]  B. Meyerson,et al.  Mechanistic Studies of Chemical Vapor Deposition , 1987 .

[32]  H. O'neal,et al.  Stoichiometry and possible mechanism of SiH4O2 explosions , 1987 .

[33]  J. Gole,et al.  Oxidation processes in the gas-phase silane-ozone system. Chemiluminescent emission and the molecular structure of H2SiO , 1985 .

[34]  H. O'neal,et al.  Thermal decomposition kinetics of polysilanes: Disilane, trisilane, and tetrasilane , 1990 .

[35]  H. Matsunami,et al.  SiO2 Film Deposition by KrF Excimer Laser Irradiation , 1986 .

[36]  S. Koda,et al.  The SiH4+O(1D) reaction studied by infrared diode laser kinetic spectroscopy , 1989 .

[37]  G. D. White,et al.  Dynamics of hydroxyl production in the reaction of atomic oxygen(3PJ) with silane , 1988 .

[38]  L. Andrews,et al.  Matrix reactions of silane and oxygen atoms. Infrared spectroscopic evidence for the silanol, silanone, and silanoic and silicic acid molecules , 1985 .

[39]  Makoto Suzuki,et al.  Reactions of SiH2(X̄1A1) with H2, CH4, C2H4, SiH4 and Si2H6 at 298 K , 1985 .

[40]  O. Horie,et al.  Reaction of atomic oxygen (3P) with trimethylsilane , 1985 .

[41]  Sadashige Horiguchi,et al.  Premixed silaneoxygennitrogen flames , 1990 .

[42]  Joseph Katz,et al.  The counterflow diffusion flame burner: A new tool for the study of the nucleation of refractory compounds , 1985 .

[43]  Joseph M. Jasinski,et al.  Silicon Chemical Vapor Deposition One Step at a Time: Fundamental Studies of Silicon Hydride Chemistry , 1991 .

[44]  B. H. Zwerver,et al.  Laser-induced fluorescence of OH and SiO molecules during thermal chemical vapour deposition of SiO2 from silane-oxygen mixtures , 1989 .

[45]  L. P. Vogman,et al.  Explosivity of monosilane-air mixtures , 1969 .

[46]  L. Campbell,et al.  Gas Phase Composition in the Low Pressure Chemical Vapor Deposition of Silicon Dioxide , 1980 .

[47]  F. W. Lampe,et al.  The reaction of SiH2 with no in the IR laser photochemistry of SiH4 - no mixtures , 1988 .

[48]  Klavs F. Jensen,et al.  Rice-Ramsperger-Kassel-Marcus theoretical prediction of high-pressure Arrhenius parameters by nonlinear regression: application to silane and disilane decomposition , 1987 .

[49]  C. Cobianu,et al.  A mechanism for the surface reaction between silane and oxygen at low temperature and correlations with the properties of the deposited SiO2 films , 1988 .

[50]  S. Koda,et al.  A study of inhibition effects for silane combustion by additive gases , 1988 .

[51]  I. P. Rothwell,et al.  Synthetic and mechanistic aspects of intramolecular aliphatic carbon-hydrogen bond activation by titanium(IV) and zirconium(IV) metal centers , 1985 .

[52]  M. Koshi,et al.  Rate constant and mechanism of the SiH3+SiH3 reaction , 1991 .