SIMULATION AND EVALUATION OF DUAL FULLY FUZZY LINEAR SYSTEMS BY FUZZY NEURAL NETWORK

Abstract In this paper, a novel hybrid method based on fuzzy neural network for approximate solution of fuzzy linear systems of the form Ax  =  Bx  +  d , where A and B are two square matrices of fuzzy coefficients, x and d are two fuzzy number vectors, is presented. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate solution, a simple and fast algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples.

[1]  Hong-Xing Li,et al.  INTERPOLATION FUNCTIONS OF FEEDFORWARD NEURAL NETWORKS , 2003 .

[2]  Saeid Abbasbandy,et al.  LU decomposition method for solving fuzzy system of linear equations , 2006, Appl. Math. Comput..

[3]  M. S. El Naschie,et al.  The Concepts of E Infinity: An elementary introduction to the Cantorian-fractal theory of quantum physics , 2004 .

[4]  Saeid Jafari,et al.  θ-Compact fuzzy topological spaces , 2005 .

[5]  M. E. Naschie,et al.  Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics , 2006 .

[6]  James J. Buckley,et al.  Fuzzy neural network with fuzzy signals and weights , 1993, Int. J. Intell. Syst..

[7]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[8]  M. E. Naschie,et al.  A review of E infinity theory and the mass spectrum of high energy particle physics , 2004 .

[9]  M. S. El Naschie,et al.  On a Fuzzy Kähler-like Manifold which is Consistent with the Two Slit Experiment , 2005 .

[10]  Abraham Kandel,et al.  Duality in fuzzy linear systems , 2000, Fuzzy Sets Syst..

[11]  Silvia Muzzioli,et al.  Fuzzy linear systems of the form A1x+b1=A2x+b2 , 2006, Fuzzy Sets Syst..

[12]  Elnaschie THE CONCEPTS OF E INFINITY: AN ELEMENTARY INTRODUCTION TO THE CANTORIAN-FRACTAL THEORY OF QUANTUM PHYSICS , 2004 .

[13]  Osmo Kaleva Fuzzy differential equations , 1987 .

[14]  Saeid Abbasbandy,et al.  Conjugate gradient method for fuzzy symmetric positive definite system of linear equations , 2005, Appl. Math. Comput..

[15]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[16]  Abraham Kandel,et al.  Fuzzy linear systems , 1998, Fuzzy Sets Syst..

[17]  Yosuke Tanaka,et al.  Chaotic dynamics in the Friedmann equation , 2005 .

[18]  Mehdi Dehghan,et al.  Solution of the fully fuzzy linear systems using iterative techniques , 2007 .

[19]  S. Abbasbandy,et al.  Minimal solution of general dual fuzzy linear systems , 2008 .

[20]  H. Ishibuchi,et al.  A learning algorithm of fuzzy neural networks with triangular fuzzy weights , 1995 .

[21]  J. H. Park Intuitionistic Fuzzy Metric Spaces , 2004 .

[22]  Guanrong Chen,et al.  Adaptive control of discrete-time chaotic systems: a fuzzy control approach , 2004 .

[23]  R. J. Kuo,et al.  Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection , 2010 .

[24]  Xizhao Wang,et al.  Iteration algorithms for solving a system of fuzzy linear equations , 2001, Fuzzy Sets Syst..

[25]  Abraham Kandel,et al.  A new fuzzy arithmetic , 1999, Fuzzy Sets Syst..

[26]  Elnaschie ON A FUZZY KAHLER MANIFOLD WHICH IS CONSISTENT WITH THE TWO SLIT EXPERIMENT , 2005 .

[27]  Wang Jiang,et al.  H∞ Variable universe adaptive fuzzy control for chaotic system , 2005 .

[28]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[29]  James J. Buckley,et al.  Neural net solutions to fuzzy problems: The quadratic equation , 1997, Fuzzy Sets Syst..

[30]  Saeid Abbasbandy,et al.  Numerical solution of fuzzy polynomials by fuzzy neural network , 2006, Appl. Math. Comput..

[31]  Elnaschie SUPERSTRINGS, ENTROPY AND THE ELEMENTARY PARTICLES CONTENT OF THE STANDARD MODEL , 2006 .

[32]  M. S. El Naschie,et al.  Superstrings, entropy and the elementary particles content of the standard model , 2006 .

[33]  Hisao Ishibuchi,et al.  Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules , 2001, Fuzzy Sets Syst..

[34]  Kourosh Nozari,et al.  Some consequences of spacetime fuzziness , 2007 .

[35]  Saeid Abbasbandy,et al.  Tuning of reachable set in one dimensional fuzzy differential inclusions , 2005 .

[36]  Elnaschie A REVIEW OF E INFINITY THEORY AND THE MASS SPECTRUM OF HIGH ENERGY PARTICLE PHYSICS , 2004 .

[37]  Saeid Abbasbandy,et al.  Numerical solution of a system of fuzzy polynomials by fuzzy neural network , 2008, Inf. Sci..

[38]  T H Feuring,et al.  FUZZY NEURAL NETWORKS ARE UNIVERSAL APPROXIMATORS , 1995 .

[39]  Saeid Abbasbandy,et al.  Fuzzy general linear systems , 2005, Appl. Math. Comput..

[40]  S. Abbasbandy,et al.  A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS , 2005 .