On the monadic nature of categories of ordered sets

If S is an order-adjoint monad, that is, a monad on Set that factors through the category of ordered sets with left adjoint maps, then any monad morphism τ : S→ T makes T order-adjoint. The Eilenberg-Moore category of T is then monadic over the category of monoids in the Kleisli category of S.

[1]  J. Huebschmann Crossedn-fold extensions of groups and cohomology , 1980 .

[2]  P. J. Higgins,et al.  On the algebra of cubes , 1981 .

[3]  Covering groups of non-connected topological groups revisited , 2000, math/0009021.

[4]  E. Manes Algebraic Theories in a Category , 1976 .

[5]  A. Stanculescu On Gray's tensor product of 2-categories , 2010 .

[6]  Walter Tholen,et al.  Multiplicative structures over sup-lattices , 1989 .

[7]  E. Manes,et al.  A triple theoretic construction of compact algebras , 1969 .

[8]  M. Golasiński,et al.  A model structure for the homotopy theory of crossed complexes , 1989 .

[9]  CABool is monadic over almost all categories , 1992 .

[10]  Jean Benabou Treillis locaux et paratopologies , 1958 .

[11]  Ronald Brown Exact sequences of fibrations of crossed complexes, homotopy classification of maps, and nonabelian extensions of groups , 2008, 0802.4357.

[12]  M. Dakin Kan complexes and multiple groupoid structures , 2011 .

[13]  Pedro Resende,et al.  Étale groupoids and their quantales , 2007 .

[14]  P. J. Higgins,et al.  The classifying space of a crossed complex , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Richard Steiner,et al.  Multiple Categories: The Equivalence of a Globular and a Cubical Approach , 2000 .

[16]  P. J. Higgins,et al.  The equivalence of ∞-groupoids and crossed complexes , 2007 .

[17]  Oswald Wyler Algebraic theories of continuous lattices , 1981 .

[18]  Ronald Brown Fibrations of Groupoids , 1970 .

[19]  Dimitri Ara,et al.  The Brown-Golasinski model structure on strict ∞ -groupoids revisited , 2011 .

[20]  A. Tonks Theory and Applications of Crossed Complexes , 1993 .

[21]  K. I. Rosenthal Relational monoids, multirelations, and quantalic recognizers , 1997 .

[22]  Ross Street,et al.  The algebra of oriented simplexes , 1987 .

[23]  P. J. Higgins,et al.  Tensor products and homotopies for ω-groupoids and crossed complexes , 1987 .

[24]  Brian Day,et al.  Construction of biclosed categories , 1971, Bulletin of the Australian Mathematical Society.

[25]  A. Tonks On the Eilenberg–Zilber theorem for crossed complexes , 2003 .

[26]  C. Schubert Lax Algebras: A Scenic Approach , 2006 .

[27]  D. Bourn The shift functor and the comprehensive factorization for internal groupoids , 1987 .

[28]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[29]  Free crossed resolutions of groups and presentations of modules of identities among relations , 1998, math/9812132.

[30]  B. Day On closed categories of functors , 1970 .

[31]  Brian Day,et al.  A reflection theorem for closed categories , 1972 .

[32]  Dominic R. Verity,et al.  Complicial sets characterising the simplicial nerves of strict ω-categories , 2008 .

[33]  Richard Steiner THIN FILLERS IN THE CUBICAL NERVES OF OMEGA-CATEGORIES , 2006 .

[34]  Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems ⁄ , 2002, math/0212274.

[35]  Constructing quantales and their modules from monoidal categories , 1996 .

[36]  Alan Day Filter monads, continuous lattices and closure systems , 1975 .

[37]  Ronald Brown Groupoids and crossed objects in algebraic topology , 1999 .

[38]  P. J. Higgins Thin Elements and Commutative Shells in Cubical ω-categories , 2005 .

[39]  Ronald Brown A NEW HIGHER HOMOTOPY GROUPOID: THE FUNDAMENTAL GLOBULAR !-GROUPOID OF A FILTERED SPACE , 2008 .

[40]  P. J. Higgins,et al.  Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids , 2011 .

[41]  J. Howie Pullback functors and crossed complexes , 1979 .

[42]  Robert Rosebrugh,et al.  A basic distributive law , 2002 .

[43]  Christoph Schubert,et al.  Extensions in the theory of lax algebras , 2010 .

[44]  Gavin J. Seal,et al.  Order-adjoint monads and injective objects , 2010 .

[45]  P. J. Higgins,et al.  Colimit theorems for relative homotopy groups , 1981 .

[46]  T. Porter,et al.  ON THE SCHREIER THEORY OF NONABELIAN EXTENSIONS: GENERALISATIONS AND COMPUTATIONS , 2003 .

[47]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.