BINARY HIGH-FREQUENCY-CARRIER DIFFRACTIVE OPTICAL ELEMENTS : ELECTROMAGNETIC THEORY

Using rigorous electromagnetic diffraction theory, we evaluate the potential performance and the limitations of coding diffractive optical elements in the form of a pulse-frequency-modulated carrier grating. This coding scheme employs the first diffraction order of an ultrahigh-frequency binary carrier grating, with a period below 1.5 wavelengths. We establish that the pulse-frequency-modulation structure can be designed with the standard synthesis techniques based on paraxial scalar diffraction theory. However, we had to optimize the groove depth, the aspect ratio, and the carrier period with rigorous electromagnetic theory to achieve close to 100% efficiency and the desired polarization properties. Our method is compared with another recent coding scheme that utilizes the zeroth order of a subwavelength-period pulse-width-modulated binary carrier grating.

[1]  Karl Knop,et al.  Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves , 1978 .

[2]  Hans Peter Herzig,et al.  High-efficiency continuous surface-relief gratings for two-dimensional array generation. , 1992 .

[3]  M R Taghizadeh,et al.  Multilevel-grating array generators: fabrication error analysis and experiments. , 1993, Applied optics.

[4]  Frank Wyrowski Characteristics of diffractive optical elements/digital holograms , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[5]  A. Hessel,et al.  Bragg-angle blazing of diffraction gratings. , 1975 .

[6]  R K Kostuk,et al.  Distributed optical data bus for board-level interconnects. , 1993, Applied optics.

[7]  A. Hessel,et al.  On simultaneous blazing of triangular groove diffraction gratings , 1977 .

[8]  Mohammad R. Taghizadeh,et al.  Synthetic diffractive optics in the resonance domain , 1992 .

[9]  Wilhelm Stork,et al.  Zero-order gratings used as an artificial distributed index medium , 1992 .

[10]  W Stork,et al.  Artificial distributed-index media fabricated by zero-order gratings. , 1991, Optics letters.

[11]  John T. Sheridan,et al.  Design of a blazed grating consisting of metallic subwavelength binary grooves , 1993 .

[12]  M. Taghizadeh,et al.  Bragg holograms with binary synthetic surface-relief profile. , 1993, Optics letters.

[13]  Mohammad R. Taghizadeh,et al.  Electromagnetic theory of diffractive optics , 1993, Other Conferences.

[14]  T. Gaylord,et al.  Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings. , 1986, Applied optics.

[15]  M. Schroeder Binaural dissimilarity and optimum ceilings for concert halls: More lateral sound diffusion , 1979 .

[16]  Jari Turunen,et al.  Electromagnetic theory and design of diffractive-lens arrays , 1993 .

[17]  R. Petit,et al.  Diffraction par un reseau lamellaire infiniment conducteur , 1972 .

[18]  J Turunen,et al.  Parametric optimization of multilevel diffractive optical elements by electromagnetic theory. , 1992, Applied optics.

[19]  S. Chou,et al.  Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion etching , 1993 .

[20]  G. R. Ebbeson,et al.  Gratings that diffract all incident energy , 1977 .

[21]  Mohammad R. Taghizadeh,et al.  Multilevel grating array illuminators manufactured by electron-beam lithography , 1992 .

[22]  Donald W. Sweeney,et al.  Computer-Generated Microwave Kinoforms , 1989 .

[23]  Jürgen Jahns,et al.  Array generation with multilevel phase gratings , 1990 .

[24]  M W Farn,et al.  Binary gratings with increased efficiency. , 1992, Applied optics.

[25]  T. Mitsuyu,et al.  Reflection micro-Fresnel lenses and their use in an integrated focus sensor. , 1989, Applied Optics.

[26]  M. Taghizadeh,et al.  Kinoform array illuminators in fused silica , 1993 .

[27]  A W Lohmann,et al.  Binary fraunhofer holograms, generated by computer. , 1967, Applied optics.

[28]  M R Taghizadeh,et al.  Binary surface-relief gratings for array illumination in digital optics. , 1992, Applied optics.

[29]  Norbert Streibl,et al.  Beam Shaping with Optical Array Generators , 1989 .

[30]  O. Bryngdahl,et al.  Digital holography as part of diffractive optics , 1991 .

[31]  Mohammad R. Taghizadeh,et al.  Rigorous diffraction analysis of Dammann gratings , 1991 .

[32]  E. Loewen,et al.  Efficiency optimization of rectangular groove gratings for use in the visible and IR regions. , 1979, Applied optics.