Probing and tuning inelastic phonon conductance across finite-thickness interface

Phonon transmission across an interface between dissimilar crystalline solids is calculated using molecular dynamics simulations with interatomic force constants obtained from first principles. The results reveal that, although inelastic phonon transmission right at the geometrical interface can become far greater than the elastic one, its contribution to thermal boundary conductance (TBC) is severely limited by transition regions, where local phonon states at the interface recover the bulk state over a finite thickness. This suggests that TBC can be increased by enhancing phonon equilibration in the transition region, for instance, by phonon scattering, which is demonstrated by increasing the lattice anharmonicity.

[1]  J. Oksanen,et al.  Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces , 2014, 1405.3868.

[2]  T. Luo,et al.  The importance of anharmonicity in thermal transport across solid-solid interfaces , 2014 .

[3]  J. Shiomi NONEQUILIRIUM MOLECULAR DYNAMICS METHODS FOR LATTICE HEAT CONDUCTION CALCULATIONS , 2014 .

[4]  Y. Chalopin,et al.  A microscopic formulation of the phonon transmission at the nanoscale , 2013 .

[5]  Junichiro Shiomi,et al.  Importance of local force fields on lattice thermal conductivity reduction in PbTe1−xSex alloys , 2013 .

[6]  K. Esfarjani,et al.  Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method , 2012 .

[7]  D. Srivastava,et al.  Large effects of pressure induced inelastic channels on interface thermal conductance , 2012 .

[8]  O. Delaire,et al.  Microscopic mechanism of low thermal conductivity in lead telluride , 2012, 1204.0592.

[9]  Junichiro Shiomi,et al.  Thermal conductivity of half-Heusler compounds from first-principles calculations , 2011 .

[10]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[11]  J. Duda,et al.  Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance , 2011 .

[12]  Alan J. H. McGaughey,et al.  Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations , 2009 .

[13]  J. Shiomi,et al.  Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices , 2008 .

[14]  Patrick E. Hopkins,et al.  Influence of Inelastic Scattering at Metal-Dielectric Interfaces , 2008 .

[15]  L. Zhigilei,et al.  Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations , 2007 .

[16]  D. Cahill,et al.  Thermal conductance of interfaces between highly dissimilar materials , 2006 .

[17]  A. Majumdar,et al.  Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion , 2005 .

[18]  J. Freund,et al.  Lattice-dynamical calculation of phonon scattering at ideal Si–Ge interfaces , 2005 .

[19]  Deyu Li,et al.  Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires , 2004 .

[20]  A. Majumdar,et al.  Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces , 2004 .

[21]  Gang Chen,et al.  Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires , 2004 .

[22]  Natalio Mingo,et al.  Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach , 2003 .

[23]  S. Phillpot,et al.  Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation , 2002 .

[24]  Patrick E. Phelan,et al.  A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance , 2001 .

[25]  Kang L. Wang,et al.  Thermal conductivity of symmetrically strained Si/Ge superlattices , 2000 .

[26]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[27]  Rama Venkatasubramanian,et al.  Thermal conductivity of Si–Ge superlattices , 1997 .

[28]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[29]  C. Tien Annual Review of Heat Transfer , 1993 .

[30]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[31]  Young,et al.  Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. , 1989, Physical review. B, Condensed matter.

[32]  R. Pohl,et al.  Thermal boundary resistance , 1989 .