A Combinatorial Approach to Multidimensional Scaling
暂无分享,去创建一个
[1] Gintautas Dzemyda,et al. Multidimensional Data Visualization: Methods and Applications , 2012 .
[2] Leo Liberti,et al. On the Number of Solutions of the Discretizable Molecular Distance Geometry Problem , 2011, COCOA.
[3] Leo Liberti,et al. Discretization orders for distance geometry problems , 2012, Optim. Lett..
[4] Leo Liberti,et al. Euclidean Distance Geometry and Applications , 2012, SIAM Rev..
[5] Patrick J. F. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 2003 .
[6] Robert Tibshirani,et al. Supervised multidimensional scaling for visualization, classification, and bipartite ranking , 2011, Comput. Stat. Data Anal..
[7] Monique Laurent,et al. Matrix Completion Problems , 2009, Encyclopedia of Optimization.
[8] Gintautas Dzemyda,et al. Multidimensional Data Visualization , 2013 .
[9] Qunfeng Dong,et al. A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances , 2002, J. Glob. Optim..
[10] Leo Liberti,et al. Counting the Number of Solutions of KDMDGP Instances , 2013, GSI.
[11] Leo Liberti,et al. The discretizable molecular distance geometry problem , 2006, Computational Optimization and Applications.
[12] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[13] I. Borg. Multidimensional similarity structure analysis , 1987 .
[14] Max A. Little,et al. Accurate Telemonitoring of Parkinson's Disease Progression by Noninvasive Speech Tests , 2009, IEEE Transactions on Biomedical Engineering.
[15] Henry Wolkowicz,et al. On the Embeddability of Weighted Graphs in Euclidean Spaces , 2007 .
[16] Joachim M. Buhmann,et al. Optimal Cluster Preserving Embedding of Nonmetric Proximity Data , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[17] P. Groenen,et al. Applied Multidimensional Scaling , 2012 .
[18] P. Groenen,et al. Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima , 1997 .
[19] Leo Liberti,et al. Molecular distance geometry methods: from continuous to discrete , 2010, Int. Trans. Oper. Res..
[20] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .