Switching in polymeric resistance random-access memories (RRAMS)

Resistive switching in aluminum-polymer-based diodes has been investigated using small signal impedance measurements. It is shown that switching is a two-step process. In the first step, the device remains highly resistive but the low frequency capacitance increases by orders of magnitude. In the second step, resistive switching takes place. A tentative model is presented that can account for the observed behavior. The impedance analysis shows that the device does not behave homogenously over the entire electrode area and only a fraction of the device area gives rise to switching.

[1]  Raoul Schroeder,et al.  All‐Organic Permanent Memory Transistor Using an Amorphous, Spin‐Cast Ferroelectric‐like Gate Insulator , 2004 .

[2]  Jean-Michel Nunzi,et al.  A nonvolatile memory element based on an organic field-effect transistor , 2004 .

[3]  Olli Ikkala,et al.  Fullerene-based bistable devices and associated negative differential resistance effect , 2005 .

[4]  Liping Ma,et al.  Experimental study on thickness-related electrical characteristics in organic/metal-nanocluster/organic systems , 2005 .

[5]  Dago M. de Leeuw,et al.  Switching and filamentary conduction in non-volatile organic memories , 2006 .

[6]  D. Sarid,et al.  Nonvolatile multilevel conductance and memory effects in organic thin films , 2005 .

[7]  A. Pal,et al.  Multilevel conductance and memory in ultrathin organic films , 2004 .

[8]  Dim-Lee Kwong,et al.  Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications , 2005 .

[9]  Tae Wan Kim,et al.  Current-voltage (I-V) characteristics of the molecular electronic devices using various organic molecules , 2006 .

[10]  Dongge Ma,et al.  Organic Reversible Switching Devices for Memory Applications , 2000 .

[11]  Christopher A. Mills,et al.  A Memory Effect in the Current-Voltage Characteristic of a Low-Bandgap Conjugated Polymer , 2001 .

[12]  J. Shewchun,et al.  Capacitance properties of MIS tunnel diodes , 1975 .

[13]  A. Hippel,et al.  Dielectrics and Waves , 1966 .

[14]  Martijn Kemerink,et al.  Negative capacitances in low-mobility solids , 2005 .

[15]  E. Rhoderick,et al.  Solid State Electronics , 1970 .

[16]  Dongge Ma,et al.  Single-layer organic memory devices based on N,N′-di(naphthalene-l-yl)-N,N′-diphenyl-benzidine , 2005 .

[17]  Satish Patil,et al.  Organic nonvolatile memory by dopant-configurable polymer , 2006 .

[18]  D. Vuillaume,et al.  Metal∕organic∕metal bistable memory devices , 2004, cond-mat/0409758.

[19]  Frank Nüesch,et al.  Crossover from capacitive to pseudoinductive charge-relaxation in organic/polymeric light-emitting diodes , 2005 .

[20]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[21]  Jianyong Ouyang,et al.  Nonvolatile electrical bistability of organic/metal-nanocluster/organic system , 2003 .

[22]  R. Stanley Williams,et al.  Electrical characterization of Al/AlOx/molecule/Ti/Al devices , 2005 .

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  Fredrik Jakobsson,et al.  Towards addressable organic impedance switch devices , 2005 .

[25]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[26]  Michael Specht,et al.  Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications , 2005 .

[27]  J. Jung,et al.  Memory effect of ZnO nanocrystals embedded in an insulating polyimide layer , 2006 .

[28]  Anirban Bandyopadhyay,et al.  Memory-switching phenomenon in acceptor-rich organic molecules: impedance spectroscopic studies. , 2005, The journal of physical chemistry. B.

[29]  A. Pal,et al.  Dielectric properties of (multilevel) switching devices based on ultrathin organic films , 2005 .

[30]  Forming in hydrogenated amorphous silicon metal-semiconductor-metal devices using bipolar pulse stressing , 2005 .

[31]  Yang Yang,et al.  Organic Memory Device Fabricated Through Solution Processing , 2005, Proceedings of the IEEE.

[32]  J. Bisquert,et al.  Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes , 2006 .

[33]  Haruo Tanaka,et al.  Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition , 2003 .

[34]  Philip M. Rice,et al.  Organic Materials and Thin‐Film Structures for Cross‐Point Memory Cells Based on Trapping in Metallic Nanoparticles , 2005 .

[35]  Yang Yang,et al.  Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells , 2005 .

[36]  J. Shewchun,et al.  Minority carrier effects upon the small signal and steady-state properties of Schottky diodes , 1973 .

[37]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  Hole trapping in ultrathin Al2O3 and ZrO2 insulators on silicon , 2002 .

[39]  M. G. Harrison,et al.  Minority-carrier effects in poly-phenylenevinylene as studied by electrical characterization , 2001 .

[40]  Anirban Bandyopadhyay,et al.  Large conductance switching and memory effects in organic molecules for data-storage applications , 2003 .

[41]  R. Waser,et al.  Resistive switching of rose bengal devices: A molecular effect? , 2006 .

[42]  Electroforming and switching effects in yttrium oxide , 2004 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  M. Hersam,et al.  Negative capacitance in organic light-emitting diodes , 2005 .

[45]  Luisa D. Bozano,et al.  Mechanism for bistability in organic memory elements , 2004 .

[46]  T. Misawa Impedance of Bulk Semiconductor in Junction Diode , 1957 .

[47]  A. Pal,et al.  Large conductance switching and binary operation in organic devices: Role of functional groups , 2003 .

[48]  D. Morgan,et al.  A model for filament growth and switching in amorphous oxide films , 1970 .

[49]  Yang Yang,et al.  Polyaniline nanofiber/gold nanoparticle nonvolatile memory. , 2005, Nano letters.

[50]  Programmable organic thin-film devices with extremely high current densities , 2005 .

[51]  H.C.F. Martens,et al.  Crossover from space-charge-limited to recombination-limited transport in polymer light-emitting diodes , 2001 .