暂无分享,去创建一个
Agathoniki Trigoni | Stephen J. Roberts | Robert Birke | Shuyu Lin | Ronald Clark | Stephen J. Roberts | R. Birke | R. Clark | A. Trigoni | Shuyu Lin
[1] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[2] Yann LeCun,et al. The mnist database of handwritten digits , 2005 .
[3] Murray Shanahan,et al. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders , 2016, ArXiv.
[4] C. Villani. Optimal Transport: Old and New , 2008 .
[5] Stefan Leutenegger,et al. LS-Net: Learning to Solve Nonlinear Least Squares for Monocular Stereo , 2018, ECCV.
[6] Xiaogang Wang,et al. Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).
[7] Stephen J. Roberts,et al. Loss-Calibrated Approximate Inference in Bayesian Neural Networks , 2018, ArXiv.
[8] Naftali Tishby,et al. The information bottleneck method , 2000, ArXiv.
[9] Terrence J. Sejnowski,et al. Unsupervised Learning , 2018, Encyclopedia of GIS.
[10] Geoffrey E. Hinton,et al. Deep Boltzmann Machines , 2009, AISTATS.
[11] Roger B. Grosse,et al. Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.
[12] Pascal Vincent,et al. Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Bernhard Schölkopf,et al. Wasserstein Auto-Encoders , 2017, ICLR.
[14] Zoubin Ghahramani,et al. Approximate inference for the loss-calibrated Bayesian , 2011, AISTATS.
[15] Andriy Mnih,et al. Disentangling by Factorising , 2018, ICML.
[16] Michael Satosi Watanabe,et al. Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..
[17] Stefan Leutenegger,et al. CodeSLAM - Learning a Compact, Optimisable Representation for Dense Visual SLAM , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
[18] Geoffrey E. Hinton. Reducing the Dimensionality of Data with Neural , 2008 .
[19] Frank Nielsen,et al. Sinkhorn AutoEncoders , 2018, UAI.
[20] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.
[21] Geoffrey E. Hinton,et al. Reducing the Dimensionality of Data with Neural Networks , 2006, Science.
[22] Christopher Burgess,et al. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.
[23] Christopher K. I. Williams,et al. A Framework for the Quantitative Evaluation of Disentangled Representations , 2018, ICLR.