Porous Silicon Membranes over Cavity for Efficient Local Thermal Isolation in Si Thermal Sensors

An improvement of porous silicon technology for local thermal isolation on bulk crystalline silicon is presented. The technique consists of forming an air cavity below the porous layer to increase the thermal isolation efficiency. Both porous silicon and the cavity underneath are formed during the same electrochemical process in two steps: in step 1 the current density used is below a critical value, and in step 2 it is switched to a value above the critical current for electropolishing. In this way, porous silicon is formed first, followed by the formation of the cavity underneath. Experimental results and simulations are shown together with an application of this process in a thermal silicon flow sensor.

[1]  T. E. Bell,et al.  Porous silicon as a sacrificial material , 1996 .

[2]  S. D. Collins,et al.  Porous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in HF Solution , 1989 .

[3]  G Kaltsas,et al.  Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation , 1999 .

[4]  G. Kaltsas,et al.  Porous Silicon as an Effective Material for Thermal Isolation on Bulk Crystalline Silicon , 2000 .

[5]  A. Nassiopoulou,et al.  Planar CMOS compatible process for the fabrication of buried microchannels in silicon, using porous-silicon technology , 2003 .

[6]  Walter Lang,et al.  Porous silicon: A novel material for microsystems , 1995 .

[7]  G. Kaltsas,et al.  Fabrication and testing of an integrated thermal flow sensor employing thermal isolation by a porous silicon membrane over an air cavity , 2004 .

[8]  G. Kaltsas,et al.  Frontside bulk silicon micromachining using porous-silicon technology , 1998 .

[9]  G. Kaltsas,et al.  Bulk silicon micromachining using porous silicon sacrificial layers , 1997 .

[10]  V. Lysenko,et al.  Nanoscale nature and low thermal conductivity of porous silicon layers , 1998 .

[11]  Olivier Français,et al.  Chemical sensing: millimeter size resonant microcantilever performance , 2004 .

[12]  A. van den Berg,et al.  Multi-walled microchannels: free-standing porous silicon membranes for use in /spl mu/TAS , 2000, Journal of Microelectromechanical Systems.

[13]  Gerhard Lammel,et al.  Free-standing, mobile 3D porous silicon microstructures , 2000 .