Kernelized Sorting

Object matching is a fundamental operation in data analysis. It typically requires the definition of a similarity measure between the classes of objects to be matched. Instead, we develop an approach which is able to perform matching by requiring a similarity measure only within each of the classes. This is achieved by maximizing the dependency between matched pairs of observations by means of the Hilbert-Schmidt Independence Criterion. This problem can be cast as one of maximizing a quadratic assignment problem with special structure and we present a simple algorithm for finding a locally optimal solution.

[1]  A. Volgenant,et al.  A shortest augmenting path algorithm for dense and sparse linear assignment problems , 1987, Computing.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[4]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[5]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[7]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[8]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[9]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[10]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[11]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[12]  Kenneth Ward Church,et al.  A Program for Aligning Sentences in Bilingual Corpora , 1993, CL.

[13]  Alexander J. Smola,et al.  Learning Graph Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Philipp Koehn,et al.  Europarl: A Parallel Corpus for Statistical Machine Translation , 2005, MTSUMMIT.

[15]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[16]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[17]  Dale Schuurmans,et al.  Graphical Models and Point Pattern Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  W. Gander,et al.  A D.C. OPTIMIZATION ALGORITHM FOR SOLVING THE TRUST-REGION SUBPROBLEM∗ , 1998 .

[19]  Bernhard Schölkopf,et al.  Implicit Surface Modelling with a Globally Regularised Basis of Compact Support , 2006, Comput. Graph. Forum.

[20]  Tony Jebara,et al.  Kernelizing Sorting, Permutation, and Alignment for Minimum Volume PCA , 2004, COLT.

[21]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[22]  S. Sherman On a Theorem of Hardy, Littlewood, Polya, and Blackwell. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. Gander,et al.  A Constrained Eigenvalue Problem , 1989 .

[24]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[25]  Bernhard Schölkopf,et al.  Learning Dense 3D Correspondence , 2006, NIPS.

[26]  R. Burkard Quadratic Assignment Problems , 1984 .

[27]  Kilian Q. Weinberger,et al.  An Introduction to Nonlinear Dimensionality Reduction by Maximum Variance Unfolding , 2006, AAAI.

[28]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[29]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[30]  Bernhard Schölkopf,et al.  The connection between regularization operators and support vector kernels , 1998, Neural Networks.

[31]  Jianbo Shi,et al.  Balanced Graph Matching , 2006, NIPS.

[32]  Par N. Aronszajn La théorie des noyaux reproduisants et ses applications Première Partie , 1943, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[34]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[35]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[36]  Bernhard Schölkopf,et al.  Injective Hilbert Space Embeddings of Probability Measures , 2008, COLT.