On some p-differential graded link homologies
暂无分享,去创建一个
[1] E. Wagner,et al. Symmetric Khovanov-Rozansky link homologies , 2018, Journal de l’École polytechnique — Mathématiques.
[2] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[3] David E. V. Rose,et al. Annular Evaluation and Link Homology , 2018, 1802.04131.
[4] B. Webster,et al. Knot Invariants and Higher Representation Theory , 2013, 1309.3796.
[5] Sabin Cautis. Remarks on coloured triply graded link invariants , 2016, 1611.09924.
[6] You Qi,et al. A categorification of the Burau representation at prime roots of unity , 2013, 1312.7692.
[7] You Qi,et al. Categorification at prime roots of unity and hopfological finiteness , 2015, 1509.00438.
[8] C. Ricketts. Pages on Art , 2015 .
[9] M. Khovanov,et al. An approach to categorification of some small quantum groups II , 2012, 1208.0616.
[10] M. Khovanov,et al. Positive half of the Witt algebra acts on triply graded link homology , 2013, 1305.1642.
[11] You Qi. Hopfological algebra , 2012, Compositio Mathematica.
[12] R. Rouquier. Khovanov-Rozansky homology and 2-braid groups , 2012, 1203.5065.
[13] Mikhail Khovanov,et al. Diagrammatics for Soergel Categories , 2009, Int. J. Math. Math. Sci..
[14] M. Khovanov,et al. Matrix factorizations and link homology II , 2005, math/0505056.
[15] M. Khovanov,et al. Matrix factorizations and link homology , 2004, math/0401268.
[16] Mikhail Khovanov,et al. Triply-graded link homology and Hochschild homology of Soergel bimodules , 2005, math/0510265.
[17] M. Khovanov. Hopfological algebra and categorification at a root of unity: The first steps , 2005, math/0509083.
[18] R. Rouquier. Categorification of the braid groups , 2004, math/0409593.
[19] M. Khovanov. A categorification of the Jones polynomial , 1999, math/9908171.
[20] C. Kassel,et al. Algèbre Homologique des N-Complexes et Homologie de Hochschild aux Racines de l'Unité , 1998 .
[21] C. Kassel,et al. Algèbre Homologique des N-Complexes et Homologie de Hochschild aux Racines de l'Unité , 1997, q-alg/9705001.
[22] L. Crane,et al. Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.
[23] V. Turaev,et al. Ribbon graphs and their invaraints derived from quantum groups , 1990 .
[24] Edward Witten,et al. Quantum field theory and the Jones polynomial , 1989 .
[25] E. Spanier. The Mayer homology theory , 1949 .
[26] W. Mayer. A New Homology Theory. II , 1942 .
[27] W. Mayer. A New Homology Theory , 1942 .