Significant factors affecting heat transfer performance of vapor chamber and strategies to promote it: A critical review

[1]  Wei-Feng Sun,et al.  Experimental study of flow boiling performance of open-ring pin fin microchannels , 2021 .

[2]  Yong Tang,et al.  Thermal performance enhancement of an ultra-thin flattened heat pipe with multiple wick structure , 2021 .

[3]  J. S. Kim,et al.  Thermal performance of aluminum vapor chamber for EV battery thermal management , 2020 .

[4]  Yang Liu,et al.  Development and evaluation of a supersized aluminum flat plate heat pipe for natural cooling of high power telecommunication equipment , 2020 .

[5]  Yong Tang,et al.  Effect of inclination angle on the thermal performance of an ultrathin heat pipe with multi-scale wick structure , 2020 .

[6]  E. Matioli,et al.  Co-designing electronics with microfluidics for more sustainable cooling , 2020, Nature.

[7]  Qifei Jian,et al.  Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers , 2020 .

[8]  Zhixin Li,et al.  Capillary and thermal performance enhancement of rectangular grooved micro heat pipe with micro pillars , 2020, International Journal of Heat and Mass Transfer.

[9]  Yao-hua Zhao,et al.  A comparative experimental investigation on thermal performance for two types of vacuum tube solar air collectors based on flat micro-heat pipe arrays (FMHPA) , 2020 .

[10]  Zhongliang Liu,et al.  Effects of the heating surface structure of phase change chamber on boiling-condensation coexisting phase change heat transfer , 2020 .

[11]  Yong Tang,et al.  Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions , 2020 .

[12]  Jinchen Tang,et al.  Evaluation of capillary wetting performance of micro-nano hybrid structures for open microgrooves heat sink , 2020 .

[13]  Wangyu Liu,et al.  Fabrication and experimental investigation of the bionic vapor chamber , 2020 .

[14]  Y. Diao,et al.  Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays , 2020 .

[15]  Y. Li,et al.  A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices , 2020 .

[16]  Chen Feng,et al.  A novel ultra-large flat plate heat pipe manufactured by thermal spray , 2020, Applied Thermal Engineering.

[17]  Yingxi Xie,et al.  Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED , 2020 .

[18]  Zhuqian Zhang,et al.  Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries , 2020 .

[19]  G. Ding,et al.  Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall , 2020 .

[20]  J. Weibel,et al.  On the transient thermal response of thin vapor chamber heat spreaders: Optimized design and fluid selection , 2020 .

[21]  Xiu-lan Yan,et al.  The numerical modeling of the vapor bubble growth on the silicon substrate inside the flat plate heat pipe , 2020 .

[22]  Yong Tang,et al.  Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors , 2020 .

[23]  P. Naphon,et al.  Thermal management system with different configuration liquid vapor chambers for high power electronic devices , 2020 .

[24]  Xingping Li,et al.  Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for cooling high-end smartphone chips , 2019 .

[25]  Randeep Singh,et al.  On the effective thermal conductivity of the vapour region in vapour chamber heat spreaders , 2019, International Journal of Heat and Mass Transfer.

[26]  Wenbin Zhou,et al.  Study on axial wetting length and evaporating heat transfer in rectangular microgrooves with superhydrophilic nano-textured surfaces for two-phase heat transfer devices , 2019, Energy Conversion and Management.

[27]  Y. Li,et al.  Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe , 2019, Applied Thermal Engineering.

[28]  Wangyu Liu,et al.  Multiscale Simulation of a Novel Leaf-vein-inspired Gradient Porous Wick Structure , 2019, Journal of Bionic Engineering.

[29]  R. Coehoorn,et al.  An integrated heat pipe coupling the vapor chamber and two cylindrical heat pipes with high anti-gravity thermal performance , 2019, Applied Thermal Engineering.

[30]  R. Coehoorn,et al.  Experimental investigation on the thermal performance of three-dimensional vapor chamber for LED automotive headlamps , 2019, Applied Thermal Engineering.

[31]  Y. Li,et al.  Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions , 2019, Applied Thermal Engineering.

[32]  B. Çetin,et al.  Experimental Thermal Performance Characterization of Flat Grooved Heat Pipes , 2019 .

[33]  G. Ding,et al.  Heat transfer enhancement in microchannel heat sink with bidirectional rib , 2019, International Journal of Heat and Mass Transfer.

[34]  J. Weibel,et al.  Simultaneous wick and fluid selection for the design of minimized-thermal-resistance vapor chambers under different operating conditions , 2019, International Journal of Heat and Mass Transfer.

[35]  J. Weibel,et al.  Area-scalable high-heat-flux dissipation at low thermal resistance using a capillary-fed two-layer evaporator wick , 2019, International Journal of Heat and Mass Transfer.

[36]  J. Weibel,et al.  Experimental investigation of boiling regimes in a capillary-fed two-layer evaporator wick , 2019, International Journal of Heat and Mass Transfer.

[37]  Randeep Singh,et al.  Experimental investigation of a vapour chamber heat spreader with hybrid wick structure , 2019, International Journal of Thermal Sciences.

[38]  Wenzhi Cui,et al.  Thermal spreading resistance of grooved vapor chamber heat spreader , 2019, Applied Thermal Engineering.

[39]  Yangang Wang,et al.  Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for IGBT power module , 2019, Thermal Science and Engineering Progress.

[40]  Jian Wang,et al.  Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling , 2019, Applied Energy.

[41]  Yong Tang,et al.  Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe , 2019, Renewable Energy.

[42]  Y. Li,et al.  Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices , 2019, Energy Conversion and Management.

[43]  J. Weibel,et al.  Design of an Area-Scalable Two-Layer Evaporator Wick for High-Heat-Flux Vapor Chambers , 2019, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[44]  S. Chang,et al.  Thermal performance evaluation of thin vapor chamber , 2019, Applied Thermal Engineering.

[45]  C. J. Porras-Prieto,et al.  Profitability of a solar water heating system with evacuated tube collector in the meat industry , 2019, Renewable Energy.

[46]  Yong Li,et al.  A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices , 2019, Energy Conversion and Management.

[47]  P. Naphon,et al.  Fill ratio effects on vapor chamber thermal resistance with different configuration structures , 2018, International Journal of Heat and Mass Transfer.

[48]  Qihao Weng,et al.  Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication , 2018, International Journal of Heat and Mass Transfer.

[49]  Y. Diao,et al.  Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays , 2018, Energy.

[50]  S. S. Bahga,et al.  Enhanced thermal performance of micro heat pipes through optimization of wettability gradient , 2018, Applied Thermal Engineering.

[51]  Shwin-Chung Wong,et al.  Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles , 2018, International Journal of Heat and Mass Transfer.

[52]  Yongping Chen,et al.  An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator , 2018, Applied Thermal Engineering.

[53]  Yong Li,et al.  Review of applications and developments of ultra-thin micro heat pipes for electronic cooling , 2018, Applied Energy.

[54]  C. Byon,et al.  Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures , 2018, International Journal of Heat and Mass Transfer.

[55]  Wangyu Liu,et al.  The experimental investigation of a vapor chamber with compound columns under the influence of gravity , 2018, Applied Thermal Engineering.

[56]  Combined effects of heat input power and filling fluid charge on the thermal performance of an electrohydrodynamic axially grooved flat miniature heat pipe , 2018 .

[57]  Artur Nemś,et al.  Validation of a new concept of a solar air heating system with a long-term granite storage bed for a single-family house , 2018 .

[58]  B. Çetin,et al.  Effect of design and operating parameters on the thermal performance of aluminum flat grooved heat pipes , 2018 .

[59]  Yong Tang,et al.  Experimental investigation of the thermal performance of heat pipe with multi-heat source and double-end cooling , 2018 .

[60]  D. Attinger,et al.  Vapor chambers with hydrophobic and biphilic evaporators in moderate to high heat flux applications , 2018 .

[61]  W. Yuan,et al.  Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array , 2018 .

[62]  Cheng-Wei Tu,et al.  Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability , 2017 .

[63]  Yong Tang,et al.  Thermal management of high-power LEDs based on integrated heat sink with vapor chamber , 2017 .

[64]  Qiang Li,et al.  Visualization study on the enhancement of heat transfer for the groove flat-plate heat pipe with nanoflower coated CuO layer , 2017 .

[65]  Daxiang Deng,et al.  Thermal performance of composite porous vapor chambers with uniform radial grooves , 2017 .

[66]  Roy Kornbluh,et al.  Highly efficient electrocaloric cooling with electrostatic actuation , 2017, Science.

[67]  D. Attinger,et al.  Feasibility study of a vapor chamber with a hydrophobic evaporator substrate in high heat flux applications , 2017 .

[68]  Wenjiong Cao,et al.  Heat dissipation of high-power light emitting diode chip on board by a novel flat plate heat pipe , 2017 .

[69]  Ji Li,et al.  Managing high heat flux up to 500 W/cm2 through an ultra-thin flat heat pipe with superhydrophilic wick , 2017 .

[70]  Jinliang Xu,et al.  Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices , 2017 .

[71]  L. Wrobel,et al.  Heat pipe based systems - Advances and applications , 2017 .

[72]  W. Goh Vapor Chamber Embedded With Hollow Condenser Tubes Heat Sink. , 2017 .

[73]  Gang Wang,et al.  Enhancement of capillary and thermal performance of grooved copper heat pipe by gradient wettability surface , 2017 .

[74]  Ronggui Yang,et al.  Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling , 2017, Science.

[75]  J. Weibel,et al.  Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers , 2017 .

[76]  Yong Tang,et al.  Fabrication and capillary characterization of micro-grooved wicks with reentrant cavity array , 2017 .

[77]  S. S. Bahga,et al.  Enhancement of thermal performance of micro heat pipes using wettability gradients , 2017 .

[78]  Haitham M. S. Bahaidarah,et al.  Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics , 2016 .

[79]  Wangyu Liu,et al.  Heat and mass transfer characteristics of leaf-vein-inspired microchannels with wall thickening patterns , 2016 .

[80]  Yigit Akkus,et al.  A new approach to thin film evaporation modeling , 2016 .

[81]  Yong Li,et al.  Experimental investigation of vapor chambers with different wick structures at various parameters , 2016 .

[82]  J. Weibel,et al.  Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices , 2016 .

[83]  P. Naphon,et al.  Effect of sintering columns on the heat transfer and flow characteristics of the liquid cooling vapor chambers , 2016 .

[84]  S. Moghaddam,et al.  Physics of Fluid Transport in Hybrid Biporous Capillary Wicking Microstructures. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[85]  Effect of powder size on capillary and two-phase heat transfer performance for porous interconnected microchannel nets as enhanced wick for two-phase heat transfer devices , 2016 .

[86]  K. Fukuda,et al.  Development and characterization of a flat laminate vapor chamber , 2016 .

[87]  Wangyu Liu,et al.  The performance of the vapor chamber based on the plant leaf , 2016 .

[88]  Yong Tang,et al.  Influence of a sintered central column on the thermal hydraulic performance of a vapor chamber: A numerical analysis , 2016 .

[89]  Bo Li,et al.  Thermal performance of ultra-thin flattened heat pipes with composite wick structure , 2016 .

[90]  I. Catton,et al.  Designer fluid performance and inclination angle effects in a flat grooved heat pipe , 2016 .

[91]  Joon Sang Lee,et al.  Critical heat flux enhancement of pool boiling with adaptive fraction control of patterned wettability , 2016 .

[92]  Chi-Chuan Wang,et al.  An experimental and analytical investigation of the photo-thermal-electro characteristics of a high power InGaN LED module , 2016 .

[93]  Tian-Ling Ren,et al.  A review of small heat pipes for electronics , 2016 .

[94]  M. Kim,et al.  Single bubble dynamics on hydrophobic–hydrophilic mixed surfaces , 2016 .

[95]  Ji Li,et al.  Experimental studies on a novel thin flat heat pipe heat spreader , 2016 .

[96]  Evangelos Tsotsas,et al.  Two-phase flow with capillary valve effect in porous media , 2016 .

[97]  C. Byon,et al.  Permeability of microporous wicks with geometric inverse to sintered particles , 2016 .

[98]  Wei Chen,et al.  Investigation on thermal resistance of a novel evaporator wick structure , 2015 .

[99]  Suresh V. Garimella,et al.  Performance-Governing Transport Mechanisms for Heat Pipes at Ultrathin Form Factors , 2015, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[100]  Amir Faghri,et al.  Heat pipe heat exchangers and heat sinks: Opportunities, challenges, applications, analysis, and state of the art , 2015 .

[101]  J. Ling-Chin,et al.  Heat utilisation technologies: A critical review of heat pipes , 2015 .

[102]  Leonardo Kessler Slongo,et al.  Experimental testing of mini heat pipes under microgravity conditions aboard a suborbital rocket , 2015 .

[103]  Yong Tang,et al.  Numerical analysis on thermal hydraulic performance of a flat plate heat pipe with wick column , 2015 .

[104]  T. Fisher,et al.  Heterogeneous wetting surfaces with graphitic petal-decorated carbon nanotubes for enhanced flow boiling , 2015 .

[105]  Wangyu Liu,et al.  The performance of the novel vapor chamber based on the leaf vein system , 2015 .

[106]  Hongxing Yang,et al.  Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system , 2015 .

[107]  S. Harmand,et al.  An Experimental and Numerical Study on the Effects of the Flat Heat Pipe Wick Structure on Its Thermal Performance , 2015 .

[108]  Somchai Wongwises,et al.  Thermal cooling enhancement techniques for electronic components , 2015 .

[109]  P. Naphon,et al.  On the Thermal Performance of the Vapor Chamber with Micro-channel for Unmixed Air Flow Cooling , 2015 .

[110]  Jing Wang,et al.  Thermal model design and analysis of the high-power LED automotive headlight cooling device , 2015 .

[111]  H. Qiu,et al.  An asymmetrical vapor chamber with multiscale micro/nanostructured surfaces ☆ , 2014 .

[112]  Yong Tang,et al.  Characterization of capillary rise dynamics in parallel micro V-grooves , 2014 .

[113]  Kai-Shing Yang,et al.  Performance and two-phase flow pattern for micro flat heat pipes , 2014 .

[114]  Run Hu,et al.  Effect of inclination angle on the performance of a kind of vapor chamber , 2014 .

[115]  A. Bhunia,et al.  Characterization of Phase Change Heat and Mass Transfers in Monoporous Silicon Wick Structures , 2014 .

[116]  Li Shi,et al.  Emerging challenges and materials for thermal management of electronics , 2014 .

[117]  Ningling Wang,et al.  A conceptual structure for heat transfer imitating the transporting principle of plant leaf , 2014 .

[118]  G. Xia,et al.  Gas–liquid two-phase flow patterns in microchannels with reentrant cavities in sidewall , 2014 .

[119]  H. Qiu,et al.  Experimental investigation of a novel asymmetric heat spreader with nanostructure surfaces , 2014 .

[120]  Wei Zhang,et al.  Thermal performance enhancement of grooved heat pipes with inner surface treatment , 2013 .

[121]  Lin Zhu,et al.  Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications , 2013 .

[122]  Steven M. George,et al.  Capillary evaporation on micromembrane-enhanced microchannel wicks with atomic layer deposited silica , 2013 .

[123]  Yong Tang,et al.  A multi-artery vapor chamber and its performance , 2013 .

[124]  Hao Peng,et al.  Study on heat transfer performance of an aluminum flat plate heat pipe with fins in vapor chamber , 2013 .

[125]  Yung-Cheng Lee,et al.  Micromembrane-enhanced capillary evaporation , 2013 .

[126]  Ningling Wang,et al.  A novel wick structure of vapor chamber based on the fractal architecture of leaf vein , 2013 .

[127]  Shung-Wen Kang,et al.  Experimental studies of thermal resistance in a vapor chamber heat spreader , 2013 .

[128]  J. Boreyko,et al.  Vapor chambers with jumping-drop liquid return from superhydrophobic condensers , 2013 .

[129]  Ivan Catton,et al.  Planar vapor chamber with hybrid evaporator wicks for the thermal management of high-heat-flux and high-power optoelectronic devices , 2013 .

[130]  Yong Tang,et al.  Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices , 2013 .

[131]  J. Weibel,et al.  Experimental Characterization of Capillary-Fed Carbon Nanotube Vapor Chamber Wicks , 2013 .

[132]  Yong Tang,et al.  Characterization of capillary performance of composite wicks for two-phase heat transfer devices , 2013 .

[133]  P. Naphon,et al.  Application of two-phase vapor chamber technique for hard disk drive cooling of PCs , 2013 .

[134]  Victor M. Bright,et al.  Flat flexible polymer heat pipes , 2012 .

[135]  J. Weibel,et al.  Recent Advances in Vapor Chamber Transport Characterization for High-Heat-Flux Applications , 2013 .

[136]  K. Kim,et al.  Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling , 2012 .

[137]  Amir Faghri,et al.  Review and Advances in Heat Pipe Science and Technology , 2012 .

[138]  S. Kim,et al.  Effects of geometrical parameters on the boiling limit of bi-porous wicks , 2012 .

[139]  Paisarn Naphon,et al.  Study on the vapor chamber with refrigerant R-141b as working fluid for HDD cooling , 2012 .

[140]  Somchai Wongwises,et al.  On the thermal cooling of central processing unit of the PCs with vapor chamber , 2012 .

[141]  A. Majumdar,et al.  Enhanced Heat Transfer in Biporous Wicks in the Thin Liquid Film Evaporation and Boiling Regimes , 2012 .

[142]  M. Mantelli,et al.  Vapor chamber heat sink with hollow fins , 2012 .

[143]  K. Kim,et al.  Morphological change of plain and nano-porous surfaces during boiling and its effect on nucleate pool boiling heat transfer , 2012 .

[144]  Jinliang Xu,et al.  Copper foam based vapor chamber for high heat flux dissipation , 2012 .

[145]  H. J. Huang,et al.  Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module , 2012, Microelectron. Reliab..

[146]  J. Y. Murthy,et al.  Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications , 2012, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[147]  Frédéric Lefèvre,et al.  Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure , 2012 .

[148]  Nicholas R. Jankowski,et al.  Thermal performance of a flat polymer heat pipe heat spreader under high acceleration , 2012 .

[149]  Masami Ikeda,et al.  ULTRA THIN HEAT PIPE AND ITS APPLICATION , 2012 .

[150]  Q. Cai,et al.  Investigations of Biporous Wick Structure Dryout , 2012 .

[151]  C. Su,et al.  The Effects of Vapor Space Height on the Vapor Chamber Performance , 2012 .

[152]  Jue Li,et al.  On the effects of temperature on the drop reliability of electronic component boards , 2012, Microelectron. Reliab..

[153]  J. Murthy,et al.  Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders , 2012 .

[154]  M. Kim,et al.  A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces , 2011 .

[155]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[156]  R. Wu,et al.  Methanol steam reforming in microreactor with constructal tree-shaped network , 2011 .

[157]  I. Catton,et al.  Utilization of Advanced Working Fluids With Biporous Evaporators , 2011 .

[158]  Hung-Yi Li,et al.  Effects of shield on thermal-fluid performance of vapor chamber heat sink , 2011 .

[159]  Quanke Feng,et al.  Heat Transfer of an IGBT Module Integrated With a Vapor Chamber , 2011 .

[160]  Ronggui Yang,et al.  The Development of Polymer-Based Flat Heat Pipes , 2011, Journal of Microelectromechanical Systems.

[161]  Yi-Shao Lai,et al.  Thermal characteristics evaluation for board-level high performance flip-chip package equipped with vapor chamber as heat spreader , 2010 .

[162]  Jung-Chang Wang,et al.  Development of 30 Watt high-power LEDs vapor chamber-based plate , 2010 .

[163]  Suresh V. Garimella,et al.  Characterization of evaporation and boiling from sintered powder wicks fed by capillary action , 2010 .

[164]  H. Qiu,et al.  Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling , 2010, 1008.2208.

[165]  Hung-Yi Li,et al.  Thermal performance of plate-fin vapor chamber heat sinks☆ , 2010 .

[166]  Gisuk Hwang,et al.  Multi-artery heat pipe spreader: Experiment , 2010 .

[167]  Shwin-Chung Wong,et al.  A novel vapor chamber and its performance , 2010 .

[168]  Masami Ikeda,et al.  Development of ultra thin plate-type heat pipe with less than 1 mm thickness , 2010, 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).

[169]  F. Lefèvre,et al.  Confocal Microscopy for Capillary Film Measurements in a Flat Plate Heat Pipe , 2010 .

[170]  Yong Tang,et al.  Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera , 2010 .

[171]  Stéphane Lips,et al.  Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe , 2010 .

[172]  K. Ooi,et al.  A study of liquid flow in a flat plate heat pipe under localized heating , 2010 .

[173]  J. Weibel,et al.  Nano-Structured Two-Phase Heat Spreader for Cooling Ultra-High Heat Flux Sources , 2010 .

[174]  Shwin-Chung Wong,et al.  Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes , 2010 .

[175]  Yongping Chen,et al.  Thermal and hydrodynamic characteristics of constructal tree‐shaped minichannel heat sink , 2009 .

[176]  J. Boreyko,et al.  Self-propelled dropwise condensate on superhydrophobic surfaces. , 2009, Physical review letters.

[177]  Shwin-Chung Wong,et al.  Performance tests on a novel vapor chamber , 2009, 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference.

[178]  Shwin-Chung Wong,et al.  Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes , 2009, 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference.

[179]  Chi-Chuan Wang,et al.  Numerical simulation of a heat sink embedded with a vapor chamber and calculation of effective thermal conductivity of a vapor chamber , 2009 .

[180]  T. Fisher,et al.  Effects of carbon nanotube coating on flow boiling in a micro-channel , 2009 .

[181]  Sungho Jeong,et al.  Fabrication and evaluation of a copper flat micro heat pipe working under adverse-gravity orientation , 2008 .

[182]  Suresh V. Garimella,et al.  A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick , 2008 .

[183]  Zenghui Han Nanofluids with Enhanced Thermal Transport Properties , 2008 .

[184]  I. Catton,et al.  Use of biporous wicks to remove high heat fluxes , 2008 .

[185]  Suresh V. Garimella,et al.  Thermal Challenges in Next-Generation Electronic Systems , 2003, IEEE Transactions on Components and Packaging Technologies.

[186]  Jin-Cherng Shyu,et al.  Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar , 2007 .

[187]  Moo Hwan Kim,et al.  Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids , 2007 .

[188]  Suresh V. Garimella,et al.  Heat and Mass Transport in Heat Pipe Wick Structures , 2007 .

[189]  Y. Peles,et al.  Bubble Dynamics During Boiling in Enhanced Surface Microchannels , 2006, Journal of Microelectromechanical Systems.

[190]  Yaxiong Wang,et al.  Evaporation/Boiling in Thin Capillary Wicks (l)—Wick Thickness Effects , 2006 .

[191]  Masataka Mochizuki,et al.  Fundamental experiments and numerical analyses on heat transfer characteristics of a vapor chamber : (Effect of Heat Source Size) , 2006 .

[192]  Y. Takata,et al.  Boiling Feature on a Super Water-Repellent Surface , 2006 .

[193]  R. Kempers,et al.  Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes , 2006 .

[194]  Ali Koşar,et al.  Boiling heat transfer in rectangular microchannels with reentrant cavities , 2005 .

[195]  C.K. Loh,et al.  Comparative study of heat pipes performances in different orientations , 2005, Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005..

[196]  S. K. Griffiths,et al.  Steady evaporating flow in rectangular microchannels , 2005 .

[197]  Ralph L. Webb,et al.  Next Generation Devices for Electronic Cooling With Heat Rejection to Air , 2005 .

[198]  Chester G. Motloch,et al.  Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries , 2003 .

[199]  S. Kim,et al.  Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure , 2003 .

[200]  Yasuyuki Takata,et al.  Pool boiling on a superhydrophilic surface , 2003 .

[201]  Suresh V. Garimella,et al.  Transient Analysis of Flat Heat Pipes , 2003 .

[202]  B. Popov,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance , 2002 .

[203]  Yvan Avenas,et al.  Silicon heat pipes used as thermal spreaders , 2002, ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258).

[204]  G. P. Peterson,et al.  Analysis of Wire-Bonded Micro Heat Pipe Arrays , 2002 .

[205]  Yiding Cao,et al.  Wickless network heat pipes for high heat flux spreading applications , 2002 .

[206]  P. Cheng,et al.  Heat transfer and pressure drop in fractal tree-like microchannel nets , 2002 .

[207]  Peter Arthur Kew,et al.  Examination and visualisation of heat transfer processes during evaporation in capillary porous structures , 2002 .

[208]  Nengli Zhang,et al.  Innovative heat pipe systems using a new working fluid , 2001 .

[209]  Kim Tiow Ooi,et al.  A study of multiple heat sources on a flat plate heat pipe using a point source approach , 2000 .

[210]  T. Kiatsiriroat, A. Nuntaphan, J. Tiansuwan Thermal Performance Enhancement of Thermosyphon Heat Pipe with Binary Working Fluids , 2000 .

[211]  Amir Faghri,et al.  Flat Miniature Heat Pipes With Micro Capillary Grooves , 1999 .

[212]  W. Qin,et al.  Liquid flow in the anisotropic wick structure of a flat plate heat pipe under block-heating condition , 1997 .

[213]  G. P. Peterson,et al.  An Introduction to Heat Pipes: Modeling, Testing, and Applications , 1994 .

[214]  L. Vasil’ev,et al.  Limiting characteristics of inclined thermosyphons and heat pipes with excess heat-transfer agent , 1984 .

[215]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[216]  L. Fletcher Performance of Gravity-Assisted Heat Pipes Operated at Small Tilt Angles , 1978 .

[217]  Y. Kamotani Performance gravity-assisted heat pipes operated at small tilt angles , 1977 .

[218]  S. W. Chi,et al.  Heat pipe theory and practice : a sourcebook , 1976 .

[219]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[220]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .