Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass

We present a spectroscopic analysis and laser characterization of optically written waveguides in neodymium-doped gallium lanthanum sulphide (Nd/sup 3+/-Ga:La:S) chalcogenide glass. Uniform channel waveguides were fabricated in Nd/sup 3+/-Ga:La:S by exposure to radiation from a focused UV-laser beam (/spl lambda/=244 nm), producing a refractive index change /spl utri/n/spl ap/+10/sup -3/. The observed laser performance and fluorescence decay were in good agreement with values calculated from a spectroscopic analysis of 85 /spl mu/s for the /sup 4/F/sub 3/2/ lifetime and 5.9/spl times/10/sup -20/ cm/sup 2/ for the emission cross section at 1075 nm. Low threshold laser operation with emission at 1075 nm and a slope efficiency of 17% is demonstrated. The active device is spatially single mode and exhibits up to 8.6 mW of output power and propagation losses of <0.5 dBcm/sup -1/. Waveguide fabrication, photoinduced effects, and optical characterization in terms of spectroscopy, laser performance, and device attenuation are discussed.

[1]  Y. Hibino,et al.  Neodymium-doped silica-based planar waveguide lasers , 1994 .

[2]  W. P. Risk,et al.  Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses , 1988 .

[3]  Leslie Brandon Shaw,et al.  Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber , 2001 .

[4]  A. E. Owen,et al.  Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors , 1985 .

[5]  Jean Flahaut,et al.  Verres formes par les sulfures L2S3 des terres rares avec le sulfure de gallium Ga2S3 , 1976 .

[6]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[7]  Sophie LaRochelle,et al.  First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses , 1999 .

[8]  Eric Lebrasseur,et al.  Optical amplification and laser spectroscopy of neodymium-doped fluoride glass channel waveguides , 1998 .

[9]  C. Gmachl,et al.  Quantum cascade lasers with low-loss chalcogenide lateral waveguides , 2001, IEEE Photonics Technology Letters.

[10]  John Ballato,et al.  Sol-gel synthesis of rare-earth-doped fluoride glass thin films , 1996 .

[11]  A. R. Silin LIGHT-INDUCED IONIC PROCESSES IN OPTICAL OXIDE GLASSES , 1991 .

[12]  A. Bornstein,et al.  Laser emission cross-section and threshold power for laser operation at 1077 nm and 1370 nm; chalcogenide mini-lasers doped by Nd3+ , 1982 .

[13]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[14]  Younes Messaddeq,et al.  Above bandgap induced photoexpansion and photobleaching in Ga-Ge-S based glasses , 2001 .

[15]  K Tanaka,et al.  Optical fabrication of microlenses in chalcogenide glasses. , 1995, Optics letters.

[16]  M. D. Mikhailov,et al.  Photo‐ and Thermally Induced Change in the Volume of Thin Chalcogenide Films , 1990 .

[17]  Anders Bjarklev,et al.  Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films , 1994 .

[18]  A. K. Mairaj,et al.  Optical channel waveguide in chalcogenide (Ga:La:S) glass , 2001 .

[19]  D. C. Hanna,et al.  Effects of transverse-mode profile on slope efficiency and relaxation oscillations in a longitudinally-pumped laser , 1989 .

[20]  Stewart E. Miller,et al.  Integrated optics: An introduction , 1969 .

[21]  Rui M. Almeida,et al.  Sol–gel planar waveguides for integrated optics , 1999 .

[22]  Keiji Tanaka,et al.  Photoinduced processes in chalcogenide glasses , 1996 .

[23]  David N. Payne,et al.  Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass , 1997 .

[24]  Jian Xu,et al.  Sol–gel derived germanium sulfide planar waveguides , 2000 .

[25]  K. Worhoff,et al.  Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics , 1999 .

[26]  James S. Wilkinson,et al.  Neodymium-doped ion-exchanged waveguide lasers in BK-7 glass , 1993 .

[27]  Daniel W. Hewak,et al.  Gallium Lanthanum Sulphide Fibers for Infrared Transmission , 2000 .

[28]  Brigitte Boulard,et al.  Design and fabrication of lead-based fluoride glass channel waveguides , 1999 .

[29]  Jacques Lucas,et al.  Low-phonon waveguides made by F−Cl− exchange on fluoride glasses , 1997 .

[30]  Ashtosh Ganjoo,et al.  In situ measurements of photo-induced volume changes in amorphous chalcogenide films , 2000 .

[31]  Oleg M. Efimov,et al.  Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses , 2001 .

[32]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[33]  David N. Payne,et al.  A 1317nm neodymium doped fluoride glass waveguide laser , 2000 .

[34]  B. Viana,et al.  Optical characterization of Nd 3+ doped sulphide glasses , 1997 .

[35]  T. Kitagawa,et al.  Erbium-doped phosphosilicate glass waveguide amplifier fabricated by PECVD , 1993 .

[36]  P. Lagarde,et al.  An EXAFS structural approach of the lanthanum-gallium-sulfur glasses , 1989 .

[37]  H. M. Crosswhite,et al.  Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF , 1978 .

[38]  Jacques Lucas,et al.  Fluoride glasses , 1989 .

[39]  Tigran Galstian,et al.  Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses , 1999 .

[40]  Christos Riziotis,et al.  Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification , 2002 .

[41]  J. Wang,et al.  Erbium-doped ion-exchanged waveguide lasers in BK-7 glass , 1992, IEEE Photonics Technology Letters.

[42]  D. Findlay,et al.  The measurement of internal losses in 4-level lasers , 1966 .

[43]  Tsuneo Mitsuyu,et al.  Preparation and optical properties of fluoride glass waveguides induced by laser pulses , 1999 .

[44]  A. Matsuda,et al.  Reversible photo-induced volume changes in evaporated As2S3 and As4Se5Ge1 films , 1976 .