A Lower Bound for the Complexity of Monotone Graph Properties

More than 30 years ago, Karp conjectured that all nontrivial monotone graph properties are evasive, i.e., have decision tree complexity $\binom{n}{2}$, where $n$ is the number of vertices. It was proved in 1984 by Kahn, Saks, and Sturtevant [Combinatorica, 4 (1984), pp. 297--306] if $n$ is a prime power by a topological approach. Using their method, we prove a lower bound of $\frac{1}{3}n^2-o(n^2)$ for general $n$.

[1]  Michael E. Saks,et al.  A topological approach to evasiveness , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[2]  Eberhard Triesch,et al.  On the recognition complexity of some graph properties , 1996, Comb..

[3]  Andrew Chi-Chih Yao Monotone Bipartite Graph Properties are Evasive , 1988, SIAM J. Comput..

[4]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[5]  J. Dixon,et al.  Permutation Groups , 1996 .

[6]  Valerie King A lower bound for the recognition of digraph properties , 1990, Comb..

[7]  Melvyn B. Nathanson,et al.  Additive Number Theory , 1996 .

[8]  R. Ho Algebraic Topology , 2022 .

[9]  Daniel J. Kleitman,et al.  Further results on the Aanderaa-Rosenberg conjecture , 1980, J. Comb. Theory, Ser. B.

[10]  P. A. Smith Fixed-Point Theorems for Periodic Transformations , 1941 .

[11]  EBERHARD TRIESCH Some Results on Elusive Graph Properties , 1994, SIAM J. Comput..

[12]  Arnold L. Rosenberg On the time required to recognize properties of graphs: a problem , 1973, SIGA.

[13]  Eberhard Triesch,et al.  An asymptotic bound for the complexity of monotone graph properties , 2010, Comb..

[14]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[15]  Subhash Khot,et al.  Evasiveness of Subgraph Containment and Related Properties , 2001, SIAM J. Comput..

[16]  W. Massey A basic course in algebraic topology , 1991 .

[17]  Robert Oliver,et al.  Fixed-point sets of group actions on finite acyclic complexes , 1975 .

[18]  Ronald L. Rivest,et al.  On Recognizing Graph Properties from Adjacency Matrices , 1976, Theor. Comput. Sci..

[19]  Raghav Kulkarni,et al.  Evasiveness and the Distribution of Prime Numbers , 2010, STACS.