Projection methods for conic feasibility problems: applications to polynomial sum-of-squares decompositions

This paper presents a projection-based approach for solving conic feasibility problems. To find a point in the intersection of a cone and an affine subspace, we simply project a point onto this intersection. This projection is computed by dual algorithms operating a sequence of projections onto the cone and generalizing the alternating projection method. We release an easy-to-use Matlab package implementing an elementary dual-projection algorithm. Numerical experiments show that, for solving some semidefinite feasibility problems, the package is competitive with sophisticated conic programming software. We also provide a particular treatment for semidefinite feasibility problems modelling polynomial sum-of-squares decomposition problems.

[1]  John B. Moore,et al.  A finite steps algorithm for solving convex feasibility problems , 2007, J. Glob. Optim..

[2]  Adrian S. Lewis,et al.  HIFOO - A MATLAB package for fixed-order controller design and H ∞ optimization , 2006 .

[3]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[4]  N. Higham Computing the nearest correlation matrix—a problem from finance , 2002 .

[5]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[6]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[7]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[8]  John B. Moore,et al.  A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  Mihai Putinar,et al.  POSITIVE POLYNOMIALS IN SCALAR AND MATRIX VARIABLES, THE SPECTRAL THEOREM AND OPTIMIZATION , 2006 .

[12]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[13]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[14]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[15]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[16]  M. Todd,et al.  Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems , 2005 .

[17]  Henry Wolkowicz,et al.  Strong duality and minimal representations for cone optimization , 2012, Computational Optimization and Applications.

[18]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[19]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[20]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[21]  Adrian S. Lewis,et al.  Alternating Projections on Manifolds , 2008, Math. Oper. Res..

[22]  Didier Henrion,et al.  SDLS: a Matlab package for solving conic least-squares problems , 2007, 0709.2556.

[23]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[24]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[25]  O. Taussky Sums of Squares , 1970 .

[26]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[27]  S. Sullivant,et al.  Emerging applications of algebraic geometry , 2009 .

[28]  B. Craven,et al.  Generalizations of Farkas’ Theorem , 1977 .

[29]  N. Higham COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .

[30]  邵文革,et al.  Gilbert综合征二例 , 2009 .

[31]  Jérôme Malick,et al.  A Dual Approach to Semidefinite Least-Squares Problems , 2004, SIAM J. Matrix Anal. Appl..

[32]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[33]  Pablo A. Parrilo,et al.  Computing sum of squares decompositions with rational coefficients , 2008 .

[34]  Stephen P. Boyd,et al.  Least-Squares Covariance Matrix Adjustment , 2005, SIAM J. Matrix Anal. Appl..

[35]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[36]  Laurent El Ghaoui,et al.  Rank Minimization under LMI constraints: A Framework for Output Feedback Problems , 2007 .

[37]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[38]  Johan Löfberg,et al.  Pre- and Post-Processing Sum-of-Squares Programs in Practice , 2009, IEEE Transactions on Automatic Control.

[39]  B. Dumitrescu Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .

[40]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[41]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[42]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[43]  Franz Rendl,et al.  An Augmented Primal-Dual Method for Linear Conic Programs , 2008, SIAM J. Optim..

[44]  A. Ivic Sums of squares , 2020, An Introduction to 𝑞-analysis.

[45]  Stephen P. Boyd,et al.  Further Relaxations of the SDP Approach to Sensor Network Localization , 2007 .

[46]  Hilmar Drygas On a generalization of the Farkas theorem , 1969 .

[47]  Arkadi Nemirovski,et al.  The projective method for solving linear matrix inequalities , 1997, Math. Program..

[48]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[49]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..

[50]  Hans Frenk,et al.  High performance optimization , 2000 .

[51]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[52]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[53]  A. Garulli,et al.  Positive Polynomials in Control , 2005 .

[54]  Nicholas J. Higham,et al.  A Preconditioned Newton Algorithm for the Nearest Correlation Matrix , 2010 .

[55]  Defeng Sun,et al.  Quadratic Convergence and Numerical Experiments of Newton ’ s Method for Computing the Nearest Correlation Matrix , 2005 .