Genetic Algorithm in the Computation of the Camera External Orientation

The article addresses the solution of the external orientation of the camera by means of a generic algorithm which replaces complicated calculation models using the matrix inverse. The computation requires the knowledge of four control points in the spatial coordinate system and the image coordinate system. The computation procedure fits very well computer-based solutions thanks to it being very simple.

[1]  Kazuo Saito,et al.  Assimilation of Nationwide and Global GPS PWV Data for a Heavy Rain Event on 28 July 2008 in Hokuriku and Kinki, Japan , 2009 .

[2]  Giovanni Emilio Perona,et al.  Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks , 2011 .

[3]  Mi Wang,et al.  Automatic Texture Acquisition for 3D Model Using Oblique Aerial Images , 2008, 2008 First International Conference on Intelligent Networks and Intelligent Systems.

[4]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[5]  Daniela Oreni,et al.  Spatial Data Management of Temporal Map Series for Cultural and Environmental Heritage , 2010, Int. J. Spatial Data Infrastructures Res..

[6]  Takayuki Yoshihara,et al.  Time-Height Distribution of Water Vapor Derived by Moving Cell Tomography During Tsukuba GPS Campaigns , 2004 .

[7]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[8]  S. Skone,et al.  Strategies for 4-D regional modeling of water vapour using GPS , 2003, Wuhan University Journal of Natural Sciences.

[9]  Fabio Remondino,et al.  Orientation and 3D modelling from markerless terrestrial images: combining accuracy with automation , 2010 .

[10]  M. Troller,et al.  GPS based determination of the integrated and spatially distributed water vapor in the troposphere , 2004 .

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Gianfranco Forlani,et al.  GPS-assisted Adjustment of Terrestrial Blocks , 2008 .

[13]  P. Milano,et al.  FULLY AUTOMATIC UAV IMAGE-BASED SENSOR ORIENTATION , 2010 .

[14]  K. Balen,et al.  Rapid and Cost-effective assessment for World Heritage nominations , 2009 .

[15]  Dian J. Seidel,et al.  Water Vapor: Distribution and Trends , 2002 .

[16]  First-order design of geodetic networks using the simulated annealing method , 2004 .

[17]  Zhengdong Bai,et al.  Near-Real-Time GPS Sensing of Atmospheric Water Vapour , 2005 .

[18]  Filiberto Chiabrando,et al.  MAPPING OF ARCHAEOLOGICAL AREAS USING A LOW-COST UAV THE AUGUSTA BAGIENNORUM TEST SITE , 2007 .

[19]  Thomas Weise,et al.  Global Optimization Algorithms -- Theory and Application , 2009 .

[20]  Aleš Čepek,et al.  A Note on Numerical Solutions of Least SquaresAdjustment in GNU Project Gama , 2009 .

[21]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[22]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[23]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[24]  Alessandro Rizzi,et al.  Reality-based 3D documentation of natural and cultural heritage sites—techniques, problems, and examples , 2010 .

[25]  Robert M. Haralick,et al.  Review and analysis of solutions of the three point perspective pose estimation problem , 1994, International Journal of Computer Vision.

[26]  Henrik Vedel,et al.  Impact of Ground Based GPS Data on Numerical Weather Prediction , 2004 .