Solving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization

This contribution gives an overview on the state-of-the-art and recent advances in mixed integer optimization to solve planning and design problems in the process industry. In some case studies specific aspects are stressed and the typical difficulties of real world problems are addressed.Mixed integer linear optimization is widely used to solve supply chain planning problems. Some of the complicating features such as origin tracing and shelf life constraints are discussed in more detail. If properly done the planning models can also be used to do product and customer portfolio analysis.We also stress the importance of multi-criteria optimization and correct modeling for optimization under uncertainty. Stochastic programming for continuous LP problems is now part of most optimization packages, and there is encouraging progress in the field of stochastic MILP and robust MILP.Process and network design problems often lead to nonconvex mixed integer nonlinear programming models. If the time to compute the solution is not bounded, there are already a commercial solvers available which can compute the global optima of such problems within hours. If time is more restricted, then tailored solution techniques are required.

[1]  Christodoulos A. Floudas,et al.  Enhanced Continuous-Time Unit-Specific Event-Based Formulation for Short-Term Scheduling of Multipurpose Batch Processes: Resource Constraints and Mixed Storage Policies. , 2004 .

[2]  Ignacio E. Grossmann,et al.  Logic-Based Modeling and Solution of Nonlinear Discrete/Continuous Optimization Problems , 2005, Ann. Oper. Res..

[3]  Gloria Pérez,et al.  An Approach for Strategic Supply Chain Planning under Uncertainty based on Stochastic 0-1 Programming , 2003, J. Glob. Optim..

[4]  Gautam Mitra,et al.  An application of Lagrangian relaxation to a capacity planning problem under uncertainty , 2001, J. Oper. Res. Soc..

[5]  Ignacio E. Grossmann,et al.  CHALLENGES AND RESEARCH ISSUES FOR PRODUCT AND PROCESS DESIGN OPTIMIZATION , 2004 .

[6]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[7]  Ignacio E. Grossmann,et al.  Global optimization of nonlinear generalized disjunctive programming with bilinear equality constraints: applications to process networks , 2003, Comput. Chem. Eng..

[8]  N. Sahinidis,et al.  Solving Global Optimization Problems with Baron , 2001 .

[9]  János D. Pintér A Model Development System for Global Optimization , 1998 .

[10]  Ignacio E. Grossmann,et al.  LOGMIP: a disjunctive 0–1 nonlinear optimizer for process systems models , 1997 .

[11]  Christodoulos A. Floudas,et al.  Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications , 2005, Ann. Oper. Res..

[12]  C. Floudas Global optimization in design and control of chemical process systems , 1998 .

[13]  Ignacio E. Grossmann,et al.  A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems , 2001 .

[14]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[15]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[16]  Christodoulos A. Floudas,et al.  A Decomposition Strategy for Global Optimum Search in the Pooling Problem , 1990, INFORMS J. Comput..

[17]  I. Grossmann,et al.  A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times , 2002 .

[18]  Andreas A. Linninger,et al.  Optimal waste reduction and investment planning under uncertainty , 2004, Comput. Chem. Eng..

[19]  G. Maddala,et al.  The Pooling Problem , 1996 .

[20]  Christodoulos A. Floudas,et al.  The α BB Global Optimization Algorithm for Nonconvex Problems: An Overview , 2001 .

[21]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[22]  Luis Puigjaner,et al.  Batch production and preventive maintenance scheduling under equipment failure uncertainty , 1997 .

[23]  N. Sahinidis,et al.  A Lagrangian Approach to the Pooling Problem , 1999 .

[24]  I. Grossmann Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques , 2002 .

[25]  Christodoulos A. Floudas,et al.  Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review , 2004, Comput. Chem. Eng..

[26]  Christodoulos A. Floudas,et al.  Global Optimization in Design under Uncertainty: Feasibility Test and Flexibility Index Problems , 2001 .

[27]  Costas D. Maranas,et al.  Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management , 2000 .

[28]  Efstratios N. Pistikopoulos,et al.  A bilevel programming framework for enterprise-wide process networks under uncertainty , 2004, Comput. Chem. Eng..

[29]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[30]  Josef Kallrath,et al.  Mixed Integer Optimization in the Chemical Process Industry: Experience, Potential and Future Perspectives , 2000 .

[31]  Rüdiger Schultz,et al.  Stochastic programming with integer variables , 2003, Math. Program..

[32]  Josef Kallrath,et al.  Mixed-Integer Nonlinear Programming Applications , 1999 .

[33]  Pu Li,et al.  CHANCE CONSTRAINED BATCH DISTILLATION PROCESS OPTIMIZATION UNDER UNCERTAINTY , 2002 .

[34]  Carmen G. Moles,et al.  Integrated process design and control via global optimization: A wastewater treatment plant case study , 2001, 2001 European Control Conference (ECC).

[35]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[36]  Paul I. Barton,et al.  Design of process operations using hybrid dynamic optimization , 2004, Comput. Chem. Eng..

[37]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[38]  Ignacio E. Grossmann,et al.  Scheduling optimization under uncertainty - an alternative approach , 2003, Comput. Chem. Eng..

[39]  Informationstechnik Berlin,et al.  Dual Decomposition in Stochastic Integer Programming , 1996 .

[40]  Jung-Fa Tsai,et al.  Global optimization for signomial discrete programming problems in engineering design , 2002 .

[41]  I. Grossmann,et al.  Modeling issues and implementation of language for disjunctive programming , 2000 .

[42]  Gautam Mitra,et al.  Strategic and Tactical Planning Models for Supply Chain: An Application of Stochastic Mixed Integer Programming , 2006 .

[43]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[44]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[45]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[46]  Jaime Cerdá,et al.  An MILP-based approach to the short-term scheduling of make-and-pack continuous production plants , 2002, OR Spectr..

[47]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[48]  Young M. Lee,et al.  BASF Uses a Framework for Developing Web-Based Production-Planning-Optimization Tools , 2002, Interfaces.

[49]  Christodoulos A. Floudas,et al.  A new robust optimization approach for scheduling under uncertainty: : I. Bounded uncertainty , 2004, Comput. Chem. Eng..

[50]  Manfred Morari,et al.  Hybrid systems modeling - parametric programming, and model predictive control - impact on process operations , 2004 .

[51]  Sebastian Engell,et al.  Modeling and solving real-time scheduling problems by stochastic integer programming , 2004, Comput. Chem. Eng..

[52]  Julia L. Higle,et al.  An Introductory Tutorial on Stochastic Linear Programming Models , 1999, Interfaces.

[53]  Costas D. Maranas,et al.  Managing demand uncertainty in supply chain planning , 2003, Comput. Chem. Eng..

[54]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[55]  Piero Risoluti Fuzzy Sets, Decision Making, and Expert Systems , 2004 .

[56]  George L. Nemhauser,et al.  Handbook Of Discrete Optimization , 2005 .

[57]  Wiesław Danielak,et al.  Instytucjonalne formy wspierania przedsiębiorczości , 2001 .

[58]  Ignacio E. Grossmann,et al.  Part II. Future perspective on optimization , 2004, Comput. Chem. Eng..

[59]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[60]  Marcus Brandenburg,et al.  An integrated system solution for supply chain optimization in the chemical process industry , 2002, OR Spectr..

[61]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[62]  Peter Kall,et al.  Stochastic Linear Programming , 1975 .

[63]  Christodoulos A. Floudas,et al.  The MINOPT Modeling Language , 2004 .

[64]  Ignacio E. Grossmann,et al.  A NONLINEAR MULTIPERIOD PROCESS OPTIMIZATION MODEL FOR PRODUTION PLANNING IN MULTI-PLANT FACILITIES , 2000 .

[65]  Gautam Mitra,et al.  Computational solution of capacity planning models under uncertainty , 2000, Parallel Comput..

[66]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[67]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization in Nonlinear Optimal Control Problems , 2000, J. Glob. Optim..

[68]  I. Kuban Altinel,et al.  Scheduling of batch processes with operational uncertainties , 1996 .

[69]  R. Wets,et al.  Stochastic programming , 1989 .

[70]  Claire S. Adjiman,et al.  Global optimization of dynamic systems , 2004, Comput. Chem. Eng..

[71]  John R. Birge,et al.  Stochastic Programming Computation and Applications , 1997, INFORMS J. Comput..

[72]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[73]  S. Engell,et al.  Planning and Scheduling in the Process Industry , 2022 .

[74]  Hermann Schichl,et al.  GLOPT { A Program for Constrained Global Optimization , 1997 .

[75]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[76]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[77]  Matthias Lehmann,et al.  Campaign planning for multi-stage batch processes in the chemical industry , 2002, OR Spectr..

[78]  Shabbir Ahmed,et al.  A Multi-Stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty , 2003, J. Glob. Optim..

[79]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[80]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[81]  Christian Prins,et al.  Applications of optimisation with Xpress-MP , 2002 .

[82]  Stein W. Wallace,et al.  Decision Making Under Uncertainty: Is Sensitivity Analysis of Any Use? , 2000, Oper. Res..

[83]  J. Kallrath The Concept of Contiguity in Models Based on Time-Indexed Formulations , 1999 .

[84]  Ignacio E. Grossmann,et al.  Optimal process design under uncertainty , 1983 .

[85]  Maria Teresa Moreira Rodrigues,et al.  Reactive scheduling approach for multipurpose chemical batch plants , 1996 .

[86]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[87]  Laureano F. Escudero,et al.  A stochastic 0-1 program based approach for the air traffic flow management problem , 2000, Eur. J. Oper. Res..

[88]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[89]  Josef Kallrath,et al.  Optimal planning in large multi-site production networks , 2000, Eur. J. Oper. Res..

[90]  Christian Schulz,et al.  Approximation of an ideal online scheduler for a multiproduct batch plant , 2000 .

[91]  M. V. D. Vlerk Additions to the Stochastic Programming Bibliography , 2007 .

[92]  Eswaran Subrahmanian,et al.  Design and planning under uncertainty: issues on problem formulation and solution , 2003, Comput. Chem. Eng..

[93]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[94]  S. Sen Algorithms for Stochastic Mixed-Integer Programming Models , 2005 .

[95]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[96]  Hans-Jürgen Zimmermann,et al.  An application-oriented view of modeling uncertainty , 2000, Eur. J. Oper. Res..

[97]  Ignacio E. Grossmann,et al.  Mathematical programming approaches to the synthesis of chemical process systems , 1999 .

[98]  Josef Kallrath,et al.  Combined strategic and operational planning – an MILP success story in chemical industry , 2002, OR Spectr..

[99]  C. Floudas,et al.  Global optimization in multiproduct and multipurpose batch design under uncertainty , 1997 .

[100]  Günter Wozny,et al.  ROBUST OPERATIONAL PROCESS DESIGN OPTIMIZATION UNDER UNCERTAINTY , .

[101]  R Eglese,et al.  Business Optimisation: Using mathematical programming , 1997, J. Oper. Res. Soc..

[102]  Sean P. Meyn Stability, Performance Evaluation, and Optimization , 2002 .

[103]  I. Grossmann Global Optimization in Engineering Design , 2010 .

[104]  E. Pistikopoulos,et al.  Novel approach for optimal process design under uncertainty , 1995 .

[105]  M. Ierapetritou,et al.  Robust short-term scheduling of multiproduct batch plants under demand uncertainty , 2001 .

[106]  Marianthi G. Ierapetritou,et al.  Efficient short-term scheduling of refinery operations based on a continuous time formulation , 2004, Comput. Chem. Eng..

[107]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[108]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[109]  Nikolaos V. Sahinidis,et al.  The Pooling Problem , 2002 .

[110]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[111]  Heinrich Rommelfanger,et al.  Fuzzy decision support-systeme : Entscheiden bei unschärfe , 1994 .

[112]  J. A. Bandoni,et al.  SUPPLY CHAIN OPTIMIZATION : SHORT TERM PLANNING AND DISTRIBUTION DECISIONS FOR A PETROCHEMICAL COMPLEX , 2004 .

[113]  Efstratios N. Pistikopoulos,et al.  Global Optimization for Stochastic Planning, Scheduling and Design Problems , 1996 .

[114]  Pu Li,et al.  Stochastic Optimization for Operating Chemical Processes under Uncertainty , 2001 .

[115]  Rüdiger Schultz On structure and stability in stochastic programs with random technology matrix and complete integer recourse , 1995, Math. Program..

[116]  Nils Tönshoff,et al.  Implementation and Computational Results , 1997 .

[117]  Christian Schulz,et al.  Online Scheduling of Multiproduct Batch Plants under Uncertainty , 2001 .

[118]  Christodoulos A. Floudas,et al.  Global Solution Approach for a Nonconvex MINLP Problem in Product Portfolio Optimization , 2005, J. Glob. Optim..

[119]  C. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Computers and Chemical Engineering.

[120]  Maarten H. van der Vlerk,et al.  Stochastic integer programming:General models and algorithms , 1999, Ann. Oper. Res..

[121]  Ivo Nowak,et al.  Lagrangian decomposition of block-separable mixed-integer all-quadratic programs , 2005, Math. Program..

[122]  I. Nowak Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming , 2005 .

[123]  G. Nemhauser,et al.  Integer Programming , 2020 .

[124]  Josef Kallrath,et al.  Exact Computation of Global Minima of a Nonconvex Portfolio Optimization Problem , 2004 .

[125]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.